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PREFACE

pne of the major objectives of NSF grant GS-2301 is the implementation

of the semantic interpretation procedure described in Woods (1967) and the

investigation of various semantic interpretation problems as they arise in

the context of a computer system which answers English questions. Accordingly,

one of the first tasks performed under the grant was the implementation of

the semantic interpreter and the verification of its performance. Woods (1968)

describes the basic semantic interpretation system as implemented and gives

a number of examples of its interpretations. The implementation at that

time consisted of the semantic interpretation procedure alone--the syntax

trees which were input to the procedure were produced by hand, and there

was no retrieval component implemented for answering the questions.

Late in the fall of 1968, in order to provide mechanical input for

the Semantic interpreter, I began constructing a parsing program based on

the notion of a recursive transition network grammar, a model very much like

a finite state transition graph except for the presence of non-terminal as

well as terminal symbols as labels on the arcs. A non-terminal label causes

a recursive application of the transition network to recognize a construction

of the type indicated by the label before the transition so labeled is

permitted. This model, which is weakly equivalent to a non-deterministic

pushdown store automaton, occurred to me as a natural representation of
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the type of grammar that one would get if he carried the use of the Kleene

* operator and bracketed alternatives in the right-hand sides of context

free grammar rules (a notation used by many linguists) to its logical

conclusion by permitting arbitrary regular expressions as the right-hand

sides of rules. One could then merge all of the rulei with a given non-

terminal symbol as their left-hand side and could represent this rule

either by its regular expression or alternatively by an equivalent finite

state transition graph (over the total vocabulary of terminal and non-

terminal symbols). It is this latter form of representation which I

have called a recursive transition network. In the course of this

implementation, I learned that a similar approach to natural language

analysis had been used by Thorne, Brately, and Dewar (1968) and by

Bobrow and Fraser (1969). My approach is in effect a generalization

and formalization of these earlier parsers and provides a number of

additional capabilities.

In addition to many advantages for efficient context free

recognition and improved strong generative power, the transition network

model also provides a convenient means for incorporating syntactic and

semantic conditions for guiding the parsing and for performing transformations

and relocations of constituents. This is done by associating arbitrary

conditions and structure building actions with the arcs of the network.

This augmented network is a kind of "transducer", whose effects are to make
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changes in the contents of a set of registers associated with the network

and whose transitions can be conditional on the contents of those registers.

Registers can be used to hold pieces of syntactic structure whose position

and function in the syntactic structure being built might not yet have been

determined.

Experience with the parsing system has shown it to be an extremely

powerful system--capable of performing the equivalent of transformational

analysis in little more time than that customarily required for context

free analysis alone. In addition, the system is convenient for the designer

of the grammar and facilitates experiments with various types of structural

representations and various parsing strategies. By the spring of 1969, an

expanded version of the parser was in preparation and an early version was

in operation with a basic transition network of about 30 states. During

the summer of 1969, with the help of 'dirs. Madeleine Bates, a graduate

student who did much of the grammar development for the parser, the

expanded version was completed and debugged and a number of experiments

with various parsing strategies were carried out. A considerably more

powerful grammar was also developed during this time, and a second semantic

interpreter program, incorporating a number of improvements over the original

interpreter was put into operation. Two other graduate students who worked

with me during the summer developed programs for use in a retrieval

component for use by the system. W. Benjamin Brosgol wrote a set of data

base functions and semantic rules which enable the system to answer English
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questions about the transition network that drives the parser, and Miss

Nancy Neigus wrole a resolution theorem prover to be used in the

execution of "smart quantifiers" in the retrieval component.

This report presents a discussion of the augmented transition

network as a. grammar model, including a number of theoretical results

concerning the efficiency of the model for parsing. A second report

will describe the implemented transition network parser and some of the

experiments which have been performed with the system. Research dealing

with the semantic interpreter and the retrieval component is continuing

and will be described in a later report.

W. A. Woods
December, 1969
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SECTION 1

TRANSITION NETWORK MODELS

1.1 Motivation

One of the early models for natural language grammars was the finite-

state transition graph corresponding to a finitestate machine that

accepted (or generated) the sentences of a language. In this model,

the grammar is represented by a network of nodes and directed arcs

connecting them. The nodes correspond to states in a finite state

machine, and the arcs represent transitions from state to state. Each

arc is labeled with a symbol whose input can cause a transition from

the state at the tail of the arc to the state at its head. This model

has the attractive feature that the sequences of words which make up a

sentence can be read off directly by following the paths through the

grammar from the initial state to some final state. Unfortunately, the

model is grossly inadequate for the representation of natural language

grammars because of its failure to capture many of the regularities of

natural language grammars. The most notable of these is the pushdown

mechanism that permits one to suspend the processing of a constituent

at a given level while using the same mechanism to process an embedded

constituent.

Suppose, however, that one added the mechanism of recursion directly

to the transition graph model by fiat. That is, suppose that one took a

collection of transition graphs each with a name, and permitted not only



2

terminal symbols to be labels on the arcs but also non-terminal symbols

naming constructions which must be present in order for the transition

to be followed. The determination of whether such a construction was

in fact present in a sentence would be done by a "subroutine call" to

another transition graph (or the same one). The resulting model of

grammar which we will call a recursive transition network,is equivalent

in generative power to that of a context-free grammar or pushdown store

automaton, but as we will show, allows for greater efficiency of

expression, more efficient parsing algorithms, and natural extension

by "augmentation"'to more powerful models which allow various degrees

of context dependence and more flexible structure-building during

parsing. We will argue in fact that an "augmented" recursive transition

network is capable of performing the equivalent of transformational

recognition without the necessity of a separate inverse transformational

component, and that this parsing can be done in an amount of time which

is comparable to that of ordinary context free recognition.

1.2 Recursive transition networks

A recursive transition network is a directed graph with labelled

states and arcs, a distinguished state called the start state, and a

distinguished set of states called final states. It looks essentially

like a non-deterministic finite state transition diagram except that the

labels on the arcs may be state names as well as terminal symbols. The



interpretation of an arc with a state name as its label is that the

state at the end of the arc will be saved on a pushdown store and the

control will jump (without advancing the input tape) to the state that

is the arc label. When a final state is encountered then the pushdown

store may be "popped" by transferring control to the state which is

named on the top of the stack and removing that entry from the stack.

An attempt to pop an empty stack when the last input character has.

just been processed is the criterion for acceptance of an input string.

The state names that can appear on arcs in this model are essentially

the names of contructions that may be found as "phrases" of the input

tape. The effect of a state-labeled arc is that the transition that it

represents may take place if a construction of the indicated type is

found as a "phrase" of the input at the appropriate point in the input

string.

Figure 1 gives an example of a recursive transition nework for a

small subset of English. It accepts such sentences as "John washed the

car," "Did the red barn collapse?", etc. It is easy to visualize the

range of acceptable sentences from inspection of the transition network.

To recognize the sentence, "Did the red barn collapse," the network is

started in state S. The first transition is the aux transition to state

q2 permitted by the auxilliary "did". From state q2 we see that we

can get to state q3 if the next "thing" in the input string is a NP.

To ascertain if this is the case, we call the state NP. From state NP



we can follow the arc labeled det to state q6 because of the determiner

"the". From here, the adjective "red" causes a loop which returns to

state q6, and the subsequent noun "barn" causes a transition to state

q7. Since state q7 is a final state, it is possible to "pop up"

from the NP computation and continue the computation of the top level

S beginning in state q3 which is at the end of the NP arc. From

q3 the verb "collapse" permits a transition to the state q4, and since

this state is final and "collapse" is the last word in the string, the

string is accepted as a sentence.
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det

Nnpr

S is the start state

q4, q5, q7, q8, and q10 are the final states

Figure 1: A sample transition network
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The fact that the recursive transition network is equivalent to a

pushdown store automaton is not difficult to establish. Every recursive

transition t.,twork is essentially a pushdown store automaton whose stack

vocabulary is a subset of its state set. The converse fact that every

pushdown store automaton has an equivalent transition net could be

established directly, but can be more simply established by noting that

every pushdown store automaton has an equivalent context-free grammar

which has an equivalent recursive transition net as we will show.

1.3 Augmented transition networks

It is well known (c.f. Chomsky,1964) that the strict context free

grammar model is not an adequate mechanism for characterizing the

subtleties of natural languages. Many of the conditions which must be

satisfied by well-formed English sentences require some degree of

agreement between different parts of the sentence which may or may

not be adjacent (indeed which may be separated by a theoretically

unbounded number of intervening words). Context sensitive grammars

could take care of the weak generation of many of these constructions,

but only at the cost of losing the linguistic significance of the

"phrase structure" assigned by the grammar (c.f. Postal, 1964).

Moreover, the unaided context free grammar model is unable to show the

systematic relationship that exists between a declarative sentence and

its corresponding question form, between an active sentence and its



passive, etc. Chomsky's theory of transformational grammar (Chomsky, 1965),

with its distinction between the surface structure of a sentence and 1.ts

deep structure, answers these objections but falls victim of inadequacies

of its own (c.f. Schwarcz; 1967, or McCawley, 1968). In this section we

will describe a model of grammar based on the notion of a recursive

transition network which is capable of performing the equivalent of

transformational recognition without the need for a separate transformational

component and which meets many of the objections that have been raised

against the traditional model of transformational grammar.

The basic recursive transition network model as we have described

it is weakly equivalent to the context-free grammar model and differs in

strong equivalence only in its ability to characterize unbounded

branchinglas in structures of the form:

S an S and ... and S

The major features which a transformational grammar adds to those of the

context free grammar are the abilities to move fragments of the sentence

structure around (so that their positions in the deep,structure are

differeat from those in the surface structure), to copy and delete

fragments of sentence structure, and to make its actions on constituents

generally dependent on the contexts in which those constituents occur.

We can add equivalent facilities to the transition network model by
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adding to each arc of the transition network an arbitrary condition

which must be satisfied in order for the arc to be followed, and a

set of structure building actions to be executed if the arc is followed.

We call this version of the model an augmented transition network.

The augmented transition network builds up a partial structural

description of the sentence as it proceeds from state to state through

the network. The pieces of this partial description are held in

registers which can contain any rooted tree or list of rooted trees

and which are automatically pushed down when a recursive application

of the transition network is called for, and restored when the lower

level (recursive) computation is completed. The structure-building

actions on the arcs specify changes in the contents of these registers

in terms of their previous contents, the contents of other registers,

the current input symbol, and/or the results of lower level computations.

In addition to holding pieces of substructure that will eventually be

incorporated into a larger structure, the registers may also be used

to hold flags or other indicators to be interrogated by conditions on the

arcs.

Each final state of the augmented network has associated with it

one or more conditions which must be satisfied in order for that state

to cause a "pop"--i.e., to return from a lower level computation to the

next higher one, or to complete the analysis when the end of the string

is encountered. Paired with each of these conditions is a function which
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computes the value to be returned by the computation. A distinguished

register, *, which contains the current input word when a word is

being scanned, is set to the result of the lower level computation

when the network returns to the arc which called for the recursive

computation.

1.3.1 Representation of augmented networks

To make the discussion of augmented transition networks more

concrete, we give in figure 2 a specification of a language in which

an augmented transition network can be represented. The specification

is given in the form of an extended context free grammar in which a

vertical bar separates alternative ways of forming a construction

and the Kleene star operator (*) is used as a superscript to indicate

arbitrarily repeatable constituents. The non-terminal symbols of 'the

grammar consist of English descriptions enclosed in angle brackets, and

all other symbols except the vertical bar and the superscript * are

terminal symbols (including the parentheses, which indicate list structure).

The * which occurs as an alternative right-hand side for the rule for

the construction <form>, however, is a terminal symbol and is not to be

confused with the superscript *'s which indicate repeatable constituents.

The first line of the figure says that a transition network is represented

by a left parenthesis, follwed by an arc set, followed by any number of

arc sets (zero or more), followed by a right parenthesis. An arc set in
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turn consists of a left parenthesis, followed by a state name, followed

by any number of arcs, followed by a right parenthesis, and an arc can

be any one of the four forms indicated in the third rule of the grammar.

The remaining rules are interpreted in a similar fashion.



<transition network> + (<arc set> <arc set> )

<arc set> -0. (<state> <arc> )

<arc> -0. (CAT <category name> <test> <action>
*

<term act>)

(PUSH <state> <test> <action> <term act>)

(TST <arbitrary label> <test> <action> <term act>)

(POP <form> <test>)

<action> -0. (SETR <register> <form>)

(SENDR <register> <form>)

(LIFTR <register> <form>)

<term act> (TO <state>)

(JUMP <state>)

<form> -0. (GETR <register>)

* 1

(GETF <feature>)

(BUILDQ <fragment> <register>*)

(LIST <form>*)

(APPEND <form> <form>)

(QUOTE <arbitrary structure>)

Figure 2: Specification of a language

for representing augmented transition networks.
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The expressions generated as transition networks by the grammar of

figure 2 are in the form of parenthesized list structures, where a list

of the elements A, B, C, and D is represented by the expression (A B C D).

The transition network is represented as a list of arc sets, each of

which is itself a list whose first element is a state name and whose

remaining elements are arcs leaving that state. The arcs also are

represented as lists, possible forms of which are indicated in the

figure. (The conditions and functions associated with final states are

represented as "arcs" with no actions or terminal action.) The first

element of each of these arcs is a word which -.lames the type of the arc,

and the third element is th,.! arbitrary test which must be satisfied in

order for the arc to be followed. The CAT arc is an arc which can be

followed if the current input symbol is a member of the lexical

category named in the list (and the test is satisfied), while the PUSH

arc is an arc which causes a pushdown to the state indicated. The TST

arc is an arc which permits an arbitrary test to determine whether an

arc is to be followed. In all three of these arcs, the actions on the

arc are the structure-building actions, and the terminal action specifies

the state to which control is passed as a result of the transition. The

two possible terminal actions, TO and JUMP, indicate whether the input

pointer is to be advanced or not advanced, respectively- -that is, whether

the next state is to scan the next input word or whether it is to continue

to scan the same word. The POP arc is a dummy arc which indicates under
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what conditions the state is to be considered-a-final-state, aad-th I

form to be returned as the value of the computation if the POP alternative

is chosen. (One advantage of representing this information as a dummy

arc is the ability to order the choice of popping with respect to the

other arcs which leave the state.)

The actions and the forms which occur in the network are represented

in "Cambridge Polish" notation, a notation in which a function call is

represented as a parenthesized list whose first element is the name of

the function and whose remaining elements are its arguments. The

three actions indicated in figure 2 cause the contents of the indicated

register to be set equal Zo the value of the indicated form. SETR

causes this to be done at the current level of computation in the

network, while SENDR causes it to be done at the next lower level of

embedding (used to send information down to a lower level computation)

and LIFTR causes it to be done at the next higher level computation (used

to return additional information to higher-level computations).

The forms as well as the conditions (tests) of the transition network

may be arbitrary functions of the register contents, represented in some

functional specification language such as LISP (McCarthy et al., 1962),

a list processing programming language based on Church's lambda calculus

and written in Cambridge Polish notation. The seven types of forms

listed in the figure are a basic set which is sufficient to illustrate

the major features of the augmented transition network model. GETR is
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a function whose value is the contents of the indicate register, * is

a form whose value is usually the current input word, and GETF is a

function which determines the value of the specified feature for the

current input word. (In the actions which occur on a PUSH arc, * has

the value of the lower level computation which permitted the PUSH

transition.)

BUILDQ is a useful structure-building form which takes a list

structure representing a fragment of a parse tree with specially marked

nodes and returns as its value the result of resplacing those specially

marked nodes with the contents of the indicated registers.t Specifically,

for each occurrence of the symbol + in the list structure given as its

first argument, BUILDQ substitutes the contents of one of the listed

registers (the first listed register replacing the first + sign, the

The BUILDQ function which is implemented in the experimental parsing
system (to be described in a later report) is considerably more versatile

then the version described here. Likewise, the implemented parser contains

additional formats for arcs as well as other extensions to the language
specified here. There has been no attempt to define a basic irredundant
set of primitive conditions, actions, and forms, but rather an effort

has been made to allow flexibility for adding "natural" primitives which
facilitate the writing of compact grammars. For this reason, the set
of possible conditions, actions, and forms has been left open-ended to
allow for experimental determination of useful primitives. However,

the arc formats and actions described here, together with arbitrary
LISP expressions for conditions and forms, provides a model which is
equivalent in power to a Turing machine and therefore complete in a
theoretical sense.
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second register the second +, etc.). In addition, BUILDQ replaces

occurrences of the symbol * in the fragment with the value of the

form *.

The remaining three forms are basic structure-building forms (out

of which any BUILDQ can be duplicated) which respectively make a list

of the values of the listed arguments, append two lists together to

make a single list, and produce as value the (unevaluated) argument

form. An illustrative fragment of an augmented transition network is

given in figure 3. In the next section we will describe the operation

of this network and discuss some of the features of the augmented

transition network model.

1.3.2 An illustrative example

Figure 3 gives a fragment of an augmented transition network

represented in the language of figure 2. This fragment is an augmentation

of the portion of the transition network of figure 1 which consists of

the states S/, Ql, Q2, Q3, Q4, and Q5. The augmented network

builds a structural representation in which the first constituent of a

sentence is a type (either DCL or Q) which indicates whether the sentence

is declarative or interrogative, the second constituent is the subject

noun phrase, the third is an auxilliary (or NIL if there is no auxilliary),

and the fourth is the verb phrase constituent. This representation is

produced regardless of the order in which the subject noun phrase and
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the auxilliary occur in the sentence. The network also produces a

representation of a verb phrase constituent even though there is no

pushdown in the network corresponding to a verb phrase. It will be

helpful, both for the understanding of the notation and for tb-

understanding of the operation of the augmented network, to follow

through an example at this point using the network fragment of

figure 3.

Before proceeding to work an example it is necessary to explain

the representation of the parse trees which is used by the network

fragment. The parse trees are represented in a parenthesized notation

in which the representation of a node consists of a list whose first

element is the name of the node and whose remaining elements are the

representations of the constituents of that node.
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(S/ (PUSH NP/ T

(SETR SUBJ *)

(SETR TYPE (QUOTE DCL))

(TO Q1) )

(CAT AUX T

(SETR AUX *)

(SETR TYPE (QUOTE Q))

(TO Q2)))

(Ql (CAT V T

(SETR AUX NIL)

(SETR V *)

(TO Q4))

(CAT AUX T

(SETR AUX *)

(TO Q3)))

(Q2 (PUSH NP/ T

(SETR SUBJ *)

(TO Q3)))

(Q3 (CAT V T

(SETR V *)

(TO Q4)))

(Q4 (POP (BUILDQ (S + + + (VP +)) TYPE SUBJ AUX V) T)

(PUSH NP/ T

(SETR VP (BUILDQ (VP (V +) *) V))

(TO Q5)))

05. (POP (BUILDQ (S + + + +) TYPE SUBJ AUX VP) T)

(PUSH PP/ T

(SETR VP (APPEND (GETR VP) (LIST *)))

(TO Q5)))

Figure 3: An illustrative fragment

of an augmented transition network. .
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For example, the parse tree:

NP NP

I///N
John V NP

I I

likes Mary

would be represented in this notation by the expression:

(S (NP John) (VP (V likes) (NP Mary))).

This representation can also be viewed as a labelled bracketing of the

sentence in which a left bracket for a phrase of type X is represented

by a left parenthesis followed by an X, and the matching right bracket

is simply a right parenthesis.

Let us now consider the operation of the augmented network fragment

of figure 3 for the input sentence "Does John like Mary?".

1. We begin the process in state S/ scanning the first word of

the sentence, "does ". Since this word is an auxilliary, its

dictionary entry would mark it as a member of the category

AUX and therefore (since its arbitrary condition T is the

universally true condition) the arc (CAT AUX T ...) can be

followed. (The other arc which pushed down to look for a

noun phrase will not be successful.) In following this arc,

we execute the actions:(SETR AUX *), which puts the current

word "does" into a register named AUX, (SETR TYP (QUOTE Q)),

which puts the symbol "Q" into a register named TYPE, and
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(TO Q2), which causes the network to enter state Q2 scanning

the next word of the sentence "John".

2. State Q2 has only one arc leaving it, which is a push to

state NP/. The push will be successful and will return a

representation of the structure of the noun phrase which will

then become the value of the special register *. We will

assume that the representation returned is the expression

"(NP John)". Now, having recognized a construction of type

NP, we proceed to perform the actions on the arc. The action

(SETR SUBJ *) causes the value "(NP John)" to be placed in the

register SUBJ, and the action (TO Q3) causes us to enter the

state Q3 scanning the next word "like". The register contents

at this point are:

TYPE : Q

AUX . does

SUBJ : (NP John).

3. From state Q3, the verb "like" allows a transition to state

Q4, setting the contents of a register V to the value "like"

in the process, and the input pointer is advanced to scan the

word "Mary".

4. Q4, being a final state could choose to "POP", indicating that

the string that has been processed so far is a complete sentence

(according to the grammar of figure 1); however, since this is
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not the end of the sentence, this alternative is not successful.

However, the state also has an arc which pushes down to state

NP/, and this alternative will succeed, returning the value

"(NP Mary)". The action (SETR VP (BUILDQ (VP (V 4) *) V))

will now take the structure fragment "(VP (V +) *)" and

substitute the current value of * for the occurrence of *

in the fragment and replace the occurrence of + with the

contents of the indicated register V. The resulting structure,

"(VP (V like) (NP Mary))" will be placed in the register VP,

and the action (TO Q5) causes a transition to state Q5 scanning

beyond the end of the input string. The register contents at

this point are:

TYPE

AUX

SUBJ

V

VP

.

.

.

.

.

Q

does

(NP John)

like

(VP (V like) (NP Mary))

5. We are now scanning the end of the sentence, and since Q5

is a final state (i.e., it has a "POP" arc), and the condition

T is satisfied, the sentence is accepted. The form

"(BUILDQ (S + + + +) TYPE SUBJ AUX VP)" specifies the value to

be returned as the analysis of the sentence. The value is

obtained by substituting the contents of the registers TYPE,
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SUBJ, AUX, and VP for the successive instances of the symbol

"+" in the fragment "(S + + + +)" to give the final sentence

analysis:

(S Q (NP John) does (VP (V like) (NP Mary)))

which represents the parse tree:

Q NP does

John V NP

1

like Mary

In ordinary context free recognition, the structural descriptions

of sentences are more or less direct representations of the flow of

control of the parser as it analyzes the sentence. The structural

descriptions assigned by the structure building rules of an augmented

transition network, as we can see from the example, are comparatively

independent of the flow of control of the algorithm. This is not to

say that they are not determined by the flow of control of the parser,

for this they surely are; rather we mean to point out that they are

not isomorphic to the flow of control as in the usual context free

recognition algorithms. It is possible for a constituent that is

found in the course of analysis to appear in the final structural

description several times or not at all, and its location may be entirely

different from that in which it was found in the surface structure.
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In addition, the structural description assigned to a constituent at

one point during the analysis may be changed or transformed before that

structure is incorporated into the final structural description of the

sentence as a whole. These facilities plus the ability to test

arbitrary conditions allow the equivalent of a transformational deep

structure to be constructed while the parser is performing transitions

that are isomorphic to the surface structure of a sentence.

1.4 Transformational recoanitim

The usual model of transformational grammar is a generative model

consisting of a context free (base) grammar and a set of transformational

rules which map syntax trees into new (derived) syntax trees. The

generation of a sentence with such a grammar consists of first constructing

a deep structure using the base component grammar and then transforming

this deep structure into a surface structure by successive applications

of transformations. The terminal nodes (or leaves) of the surface

structure tree give the final form of the sentence. This model of

transformational grammar is totally oriented toward the generation of

sentences rather than their analysis, and although there is clearly an

algorithm for the use of such a grammar to analyze a sentence--namely

the procedure of "analysis by synthesis" (Matthews, 1962)--this algorithm

is so inefficient as to be out of the question for any practical

application. (The analysis by synthesis method consists of applying the
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rules in the "forward" (generative) direction in all possible ways to

generate all of the possible sentences of the language while looking

to see if the sentence which you are trying to analyze turns up in the

list.)

Two attempts to formulate more practical algorithms for transformational

recognition (Petrick, 1965, and NITRE, 1964) resulted in algorithms which

were still too time consuming to be practical for the analysis of more than

a few test sentences with small sample grammars. Both of these algorithms

attempt to analyze sentences by applying the transformations in reverse,

a procedure which is far less straightforward than it sounds. The

difficulty with simply performing the transformations in reverse is

twofold. First, the transformations operate on tree structures and

produce tree structures as their values. In the forward direction, they

begin with the deep structure tree and end with the surface structure

tree. In order to reverse this process, one needs first to obtain a

surface structure tree for the input sentence. However, there is no

component in the transformational model which characterizes the possible

surface structures (their only characterization is implicit in the

changes which can be made in the deep structures by means of the

transformations). Both the MITRE and the Petrick analysis procedures

solve this problem by constructing an "augmented grammar" which consists

of the rules of the original base component grammar plus additional

rules which characterize the structures which can be added by transformations.
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In the MITRE procedure this "surface grammar" is constructed by hand

and no formal procedure is available for constructing it from the

original transformational grammar. In the Petrick procedure, there is

a formal procedure for obtaining an augmented grammar but it will not

necessarily terminate unless the length of the possible input sentences

is first circumscribed (which unfortunately reduces the class of

sentences that can be accepted to a finite set--theoretically

analyzable by table lookup).

In the MITRE procedure, the augmented grammar is used to assign

a complete "tentative" surface structure which is then subjected to

inverse transformations. In the Petrick procedure inverse transformations

are applied to partially built up surface structures and the processes of

applying transformations and building structure are interwoven. In both

systems, the inverse transformations may or may not produce a legitimate

deep structure. If they do, then the sentence is accepted, but if they

do not, then the tentative surface structure was spurious and is rejected.

There is no way to construct a context free surface grammar which will

assign all and only legitimate surface structures. One must settle

for one which will assign all legitimate surface structures plus

additional spurious ones. Moreover, the only way to tell the two apart

is to perform the inverse transformations and check the resulting

"tentative" deep structures.
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The second difficulty in this method of analysis is the combinatorial

explosion of the number of possible inverse transformation sequences

that can be applied to a given surface structure tree. Although many

of the transformations when applied in the forward directioil'are

obligatory so that only one possible action can be taken, almost all

of the inverse transformations are optional. The reason for this is

that even though a given structure looks like it could have been

produced by a given forward transformation so that the inverse

transformation can be performed, there is no guarantee that the same

structure could not have arisen in a transformational derivation in

some other way. Therefore both the alternative of applying the inverse

transformation and that of not applying it must both be tried whenever

an inverse transformation can apply. The number of active paths can

grow exponentially with the number of transformations applied. Moreover,

the forward transformations usually don't specify much information about

the structure which results from applying the transformation (even

though the linguist may know a good deal about what the resulting

structure must be like). For this reason the inverse transformations

are not as selective as their forward counterparts and many more

spurious applications of transformations are allowed. That is, whereas

most forward sequences of transformations will lead to successful

surface structures, most inverse sequences will not lead to legitimate



26

deep structures, and a large amount of unnecessary wasted effort is

therefore expended on dead end paths. To make matters worse, it is

not always clear what the stopping conditions on the inverse

transformational process should be. Some inverse transformational

sequences could go on forever and it is not clear what set of

conditions is sufficient to guarantee that a given sequence will not

eventually lead to a legitimate deep structure. In short, the inverse

transformational process is an extremely complicated one and is

impractically inefficient to implement.

1.5 Augmented transition networks for transformational reco nition

Kuno (1965) suggested that it should be possible to'augment the

surface structure grammar of a transformational grammar in such a way

that it "remembered" the equivalent deep structure constructions and

could build the deep structure of the sentence while doing the surface

structure parsing, without the necessity of a separate inverse

transformational component. The model which he proposed at that time,

however, was not adequate to deal with some of the more powerful

transformational mechanisms such as the extraposition of a constituent

from an arbitrarily deep embedding. The augmented transition network,

on the other hand, provides a model which is capable of doing everything

that a transformational grammar can do and is therefore a realization of

part of the Kuno prediction. It remains to be seen whether a completely
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mechanical procedure can be developed to take a transformational

grammar in the usual formalism and translate it into an equivalent

augmented transition network, but even if such a procedure is available,

it may still be more appropriate to use the transition network model

directly for the original linguistic research and grammar development.

The reasons for this are several: First, the transition network that

could be developed by a mechanical procedure from a traditional

transformational grammar could not be expected to be as efficient as

that which could be designed by hand. Moreover, the transition network

model provides a mechanism which satisfies many of the objections which

have been raised by linguistis against the transformational grammar as

a linguistic model (such as its incompatibility with many psycholinguistic

facts which we know to characterize human language performance).

A third reason for preferring the transition network model to the

uFAIal formulation of transformational grammar is the power which it

contains in its arbitrary conditions and its structure building actions.

The model is equivalent to a Turing machine in power and yet the actions

which it performs are "natural" ones for the analysis of language.

Most linguistic research in the structure of language and mechanisms of

grammar has attempted deliberately to build models which do not have the

power of a Turing machine but which make the strongest possible hypotheses

about language mechanisms by proposing the least powerful mechanism that

can do the job. As a result of this approach many variations of the
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transformational grammar model have been proposed with different basic

repertories of transformational mechanisms. Some have cyclic transformation

rules, others do not; Some have a distinct "post cycle" that operates in a

different mode after all of the cyclic rules have been applied. There

are various types of conditions that may be asked, some models have

double structural descriptions, some have ordered rules, some have

obligatory rules, some have blocking rules, etc. In short there is not

a single transformational grammar model, there are myriad. Moreover

these models are more or less incomparable. They do not fall within a

single general framework so that their relative merits can be compared.

If one such model can handle some features of language and another can

handle different features, there is no systematic procedure for

incorporating them both into a single model. In the augmented

transition network model, the possibility exists to add to the model

whatever facility is needed and seems natural to do the. job. One can

add a new mechanism by simply inventing a new basic predicate to use in

conditions or a new function to use in the structure building rules.

It is still possible to make strong hypotheses about the types of

conditions and actions that are required, but when one finds that he

needs to accomplish a given task for which his basic model has no

"natural" mechanism, there is no problem extending the augmented transition

network model to include it. This requires only the relaxation of the

restrictions on the types of conditions and actions, and no. reformulation

of the basic model.
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1.6 Previous transition network models

Two previous parsing systems based on a form of augmented

transition network have been described in the literature. Thorne,

Bratley, and Dewar (1968) describe a procedure for natural language

analysis based on a "finite state transition network" (which is applied

recursively), and Bobrow and Fraser (1969) describe a system which is

"an elaboration of the procedure described by Thorne, Bratley, and

Dewar." Although these systems bear considerable similarity to the

one we have described, they differ from it in a number of important

respects which we will describe shortly. Let us first however, briefly

describe the two systems.

1.6.1 The Thorne system

The Thorne system assigns a representation of syntactic structure

which attempts to simultaneously represent the deep structure and the

surface structure of a sentence. Constructions are listed in the order

in which they are found in the surface structure, with their deep

structure functions indicated by labelling. Inversions in word order

are indicated by marking the structures which are found "out of place"

(i.e., in positions other than their deep structure positions) without

moving them from their surface structure positions, and later in the

string the position where they would have occurred in the deep structure

is indicated by the appropriate deep structure function label followed
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by an asterisk. (They do not describe a procedure for constituents which

are found in the surface structure to the right of their deep structure

positions. Apparently their grammar does not deal with such constructions.)

Thorne views his grammar as a form of transformational grammar

whose base component is a finite-state grammar and permits recursion to

take place only via transformations. According to Thorne, the majority

of transformation rules can be viewed as "meta rules" in the sense that

"they operate on other rules to produce derived rules rather than

operating on structural descriptions to produce new structural

descriptions." He uses an augmented transition network containing both

the original deep structure rules plus these derived rules as the

grammar table to drive his parsing algorithm, but is not able to

handle the word order inversion transformations and the conjunction

transformations in this way. Instead, he implements these features as

exceptions embedded in his parsing program.

1.6.2 The system of Bobrow and Fraser

Bobrow and.Fraser (1969) describe a parsing system which is an

elaboration of the Thorne parser. Like the Thorne paisings, the general

form of their analysis "resembles the surface structure analysis of the

sentence, with added indications of moved constituents and where they

are located in deep structure." This grammar model is also a form of

augmented transition networl whose actions include setting flags and
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function labels and whose conditions include testing previously set

flags. Unlike the Thorns system, however, Bobrow's system provides a

facility for transferring information back to some previously analyzed

constituent. In general the conditions on an arc can be arbitrary

LISP functions (the system is programmed in LISP), and the actions

for transferring information can be arbirary LISP functions. The

conditions and actions actually implemented in the system, however, are

limited tO flag testing and to the transferring back into previously

recognized structures new deep structure function labels.

According to Bobrow (personal communication) the major differences

between his system and that of Thorne is the use of symbolic flag

names (instead of bit positions), a facility for mnemonic state names,

the ability to transfer information back to previously analyzed

constituents, and a facility for active feature values in the dictionary

(these are actually routines which are stored in the dictionary entry

for the word rather than merely activated by features stored in the

dictionary.).

1.6.3 Comparison with the present system

In comparing the augmented transition network system described in

this paper with the systems of Bobrow and Fraser and of Thorne et al.,

there are two domains of comparison which must be distinguished- -the

formal description of the model and the implementation of the parsing



32

system. One of the major differences between this parsing system and

those of Bobrow and Thorne is the degree to which such a distinction

is made. The Thorne paper does not describe the augmented transition

network model which they use except to point out that the grammar

table used by the parsing program "has the form of a.finite-state

network or directed graph--a form appropriate for the representation

of a regular grammar." The transition network model is apparently

formalized only in the form in which it actually occurs in the parsing

program (which is not described). The conditions on the arcs seem to

be limited to tests of agreement of features associated with lexical

items and constituents, and the actions are limited to recording the

current constituent in the output representation, labeling constituents,

or inserting dummy nodes and markers. The mechanisms for word order

inversion and conjunction are not represented in the network but are

"incorporated into the program."

The Bobrow and Fraser paper improves considerably on the power of

the basic transition network model used by Thorne et al. It adds the

facility for arbitrary conditions and actions on the arcs thus increasing

the power of the model to that of a Turing machine. In this system as

in Thorne's, however, there is no distinction between the model and the

implementation. Although the conditions and actions are arbitrary as

far as the implementation is concerned, there is no separate formal

model which characterizes the data structures on which they operate.
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That is, in order to add such an arbitrary condition, one would have to

know how the LISP implementation of the parsing algorithm works, and

where and how its intermediate results are stored. The range of

conditions and actions available without such information--i.e., the

condition and action subroutines actually provided in the implementation--

consist of setting and testing flags and transmitting function labels

back into previously analyzed constituents. Both in Bobrow's system

and in Thorne's the actual representation of constituent structure is

isomorphic OD the recursive structure of the analysis as determined by

the history of recursive applications of the transition network, and it

is produced automatically by the parsing algorithm.

The augmented transition network as we have defined it provides a

formalized transition network model with the power of a Turing machine

independent of the implementation. The model explicitly provides for

the isolation of various partial results in named registers and allows

arbitrary conditions and actions apply to the of these

registers. Thus it is not necessary for a grammar writer to know

details of the actual implementation of the parsing algorithm in order

to take advantage of the facility for arbitrary conditions and actions.*

t
In the experimental parsing system there is sometimes an advantage

to using conditions or actions which apply to features of the implementation
that are not in the formal model. Actions of this sort are considered
to be extensions to the basic model, and the features of the implementation
which allow them to be added easily are largely features of the BBN LISP
system (Bobrow, Murphy and Teitelman, 1969) in which it is written.
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The building of the constituent structure is not performed automatically

by the parsing algorithm in this model, but must instead be specified

by explicit structure building rules. The result of this feature is

that the structures assigned to the sentence no longer need to be

isomorphic to the recursion history of the analysis, but are free to

move constituents around in the representation. Thus, the representation

produced by the parser may be a true deep structure representation

of the type assigned by the more customary transformational grammar

models (or it could also be a surface structure representation, a dual

purpose representation as in the Thorne and Bobrow systems, or

any of a number of other representations such as dependency

representations). The explicit structure-building actions on the arcs

together with the use of registers to hold pieces of sentence structure

(whose function and location may not yet have been determined) provides

an extremely flexible and efficient facility for moving constituents

around in their deep structure representations and changing the

interpretation of constituents as the course of an analysis proceeds.

It is even possible to build structures with several levels of nesting

while remaining at a single level of the transition network, and

conversely to go through several levels of recursion of the network

while building a structure which has only one level. No facility like

this is present in either the Thorne or the Bob row systems.
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Another feature of the augmented transition network parsing

system presented here which distinguishes it from the Thorne and Bobrow

systems is the effort that went into designing a language for the

specificati9n of the augmented transition network that would be convenient

and natural to the grammar designer rather than to the machine or to a

computer programmer. It is possible in a few pages to completely specify

the possible syntactic forms for the representation of an augmented

transition network to be input to this parsing system. Each arc is

represented by a mnemonic name of the type of arc, the arc label, an

arbitrary condition, and a list of actions to be executed if the arc

is followed. The condition and actions are represented as expressions

in Cambridge Polish notation with mnemonic function names, and care has

been exercised to provide a basic repertoire of such functions which is

"natural" to the task of natural language analysis. One of the goals of

the experimental parsing system is to evolve such a set of natural

operations through experience writing grammars for it, and many of the

basic operations described in this paper are the result of such

evolution. One of the unique characteristics of the augmented transition

network model is the facility to allow for evolution of this type.

Other distinguishing features between this system and the systems

of Bobrow and of Thorne lie in the method of implementation and the goals

of the system. For example, Thorne was interested in characterizing

certain psychological features of the ways in which humans parse sentences
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whereas this is not the major concern of the system of Bobrow and

Fraser nor of the system desLidbed here. Both Bobrow and Thorne,

however, were concerned with producing all of the analyses of a

sentence without performing repetitive analyses of the same constituent

for different overall analyses in which it appears, and both use a

parallel parsing strategy to accomplish this. Neither of them perform

any semantic analysis of the sentences. The present parser was designed

to be used with a semantic interpreter in a system whose objective is to

select the "most likely" syntactic analysis which "ma::es sense" to the

semantic interpreter. In this system we may require the capability for

enumerating all of the analyses of the sentence in some cases. However,

if it is possible to select the "most likely" parsing which "makes sense"

without exhaustively processing all of the ambiguous syntactic structures

which could be assigned to the sentence, then this system attempts to do

so. For this reason and other reasons having to do with the flexibility

of the experimental system for the investigation of different basic

operations, the experimental parsing system which we have implemented

pursues the individual parsings independently rather than in parallel.

In practice, the result is simply avoiding much of the processing which

would have to be done otherwise in most of the sentences which are encountered.

We show in a later section that the transition network model that we have

presented is amenable to parsing by a modified form of the Early recognition

algorithm--a parallel-type context free recognition algorithm which operates
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the input string and is one of the most efficient context free parsing

algorithms yet devised. The general n
3

time bound still applies to

the augmented transition networks provided that the conditions and

actions on the arcs take a bounded amount of time.

1.7 Advaro-ages of the augmented transition network model

The augmented transition network model of grammar has many advantages

as a model for natural language, some of which carry over to models of

programming languages as well. In this section we will review and

summarize some of the major features of the transition network model

which make it an attractive model for natural language.

1.7.1 Perspicuity

Context free grammars have been immensely successful (or at least

popular) as models for natural language in spite of formal inadequacies

of the model for handling some of the features that occur in existing

natural languages. They maintain a degree of "perspicuousness" since

the constituents which make up a construction of a given'type can be

read off directly from the context free rule. That is, by looking at

a rule of a context free grammar, the consequences of that rule for the

types of constructions that are permitted are immediately apparent. The

pushdown store automaton, on the other hand, although equivalent to the
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perspicuousness. It is not surprising therefore that linguists in

the process of constructing grammars for natural language have worked

with the context free grammar formalism and not directly with pushdown

store automata, even though the pushdown store automaton through its

finite state control mechanism allows for some economies of representation

and for greater efficiency in resulting parsing algorithms.

The theory of transformational grammar proposed by Chomsky is one

of the most powerful tools for describing the sentences that are possible

in a natural language and the relationships that hold among them, but

this theory as it is currently formalized (to the limited extent to

which it is formalized) loses the perspicuousness of the context free

grammar. It is not possible in this model to look at a single rule

and be immediately aware of its consequences for the types of construction

that are possible. The effect of a given rule is intimately bound up

with its interrelation to other rules, and in fragments of transformational

grammars for real languages, it may require an extremely complex analysis

to de:-ermine the effect and purpose of any given rule. The augmented

transition network provides the power of a transformational grammar but

maintains much of the perspicuousness of the context free grammar model.

IL the transition network model were implemented on a computer with a

graphics facility for displaying the network, then it would be one of the

most perspicuous (as well as powerful) grammar models available.
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Even without the conditions and actions on the arcs, the recursive

transition network model has greater strong generative power than the

ordinary context free grammar. This is due to its ability to characterize

constructions which have an unbounded number of immediate constituents.

Ordinary context free grammars cannot characterize trees with unbounded

branching without assuming an infinite set or rules. (Another way of

looking at the recursive transition network model is that it is a finite

representation of a context free grammar with an infinite set of rules.)

When the conditions and actions are added, the model attains the power

of a Turing machine, although the basic operations which it performs

are "natural" ones for language analysis. Using these conditions and

actions, the model is capable of performing the equivalent of transformational

analysis without the need for a separate transformational component.

Another attractive feature of the augmented transition network grammar

model is the fact that one doesn't seem to have to sacrifice efficiency

to obtain power. In the progression from context free grammars to context

sensitive grammars, to transformational grammars, the time required for

the corresponding recognition algorithms increases enormously. The

transition network model, however, while achieving all of the power of

a transformational grammar, does so without apparently requiring much

more time than is required for ordinary context free recognition. (This

will be illustrated to some extent by the example in section 1.7.6.)
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An additional advantage of the augmented transition network model

over the transformational grammar model is that it is much closer to a

dual model than the transformational grammar. That is, although we have

described it as a recognition or analysis model which analyzes sentences,

there is no real restriction against running the model in a generative

mode to produce or _generate sentences. The only change in operation that

would be required is that conditions which look ahead in the sentence

would have to be interpreted in the generation algorithm as decisions to

be made which if chosen will impose constraints on the generation of

subsequent portions of the sentence. The transformational grammar model

on the other hand is almost exclusively a generative model. The analysis

problem for the transformational grammar is so extremely complicated that

no completely satisfactory recognition algorithm for transformational

grammar has yet been found. The only existing algorithms are prohibitively

time consuming and expensive.

1.7.3 Efficiency of representation

A major advantage of the transition network model over the usual

context free grammar model is the ability to merge the common parts of

many context free rules thus allowing greater efficiency of representation.

For example, the single regular-expression rule S (Q) (NEG) NP VP

replaces the four rules:
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S NP VP

S Q NP VP

S NEG NP VP

S Q NEG NP VP

in the usual context free notation. The transition network model can

frequently achieve even greater efficiency through merging because of

the absence of the linearity constraints that are present in the regular

expression notation.

The merging of redundant parts of rules not only permits a more

compact representation but also eliminates the necessity of redundant

processing when doing the parsing,. That is, by reducing the size of

the grammar representation, one also reduces the number of tests which

need to be performed during the parsing. In effect, one is taking

advantage of the fact that whether or not a rule is successful in the

ordinary context free grammar model, information is frequently gained

in the process cf matching it (or attempting to match it) which has

implications for the success or failure of later rules. Thus, when two

rules have common parts, the matching of the first one has already

performed some of the tests required for the matching of the second one.

By merging the common parts, one is able to take advantage of this

information to eliminate the redundant processing in the matching of the

second rule.
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In addition to the direct merging of common parts of different

rules when constructing a transition network model, the augmented

transition network through its use of flags allows for the merging of

similar parts of the network by recording information in registers and

interrogating it with conditions on the arcs. Thus it is possible to

store in registers some of the information that would otherwise be

implicitly remembered by the state of the network and to merge states

whose transitions are similar except for conditions on the contents of

registers. For example, consider two states whose transitions are alike

except that one is "remembering" that a negative particle has already

been found in the sentence, while the other permits a transition which

will accept a negative particle. These two states can be merged by

setting a flag to indicate the presence of a prior negative particle

and placing a condition on the arc which accepts the negative particle.

to block it if the negative flag is set.

The process of merging similar parts of the network through the

use of flags, while producing a more compact representation, does not

result in an improvement in processing time and usually requires slightly

more time. The reason for this is the increased time required to test

the conditions and the presence of additional arcs which must be

processed even though the conditions will prevent them from being

followed. In the absurd extreme, it is possible to reduce any transition

network to a one-state network by using a flag for each arc and placing
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the flags for a possible immediately preceeding arc has been set. The

obvious inefficiency here is that at every step it would be necessary

to consider each arc of the network and apply a complicated test to

determine whether the arc can be followed. There is thus a trade off

between the compactness of the representation which can be gained by

the use of flags and the increase in processing time which may result:.

This seems to be just one more example of the ubiquitous space-time

trade off that occurs for almost any computer programming problem.

In many cases, the use of registers to hold pieces of an analysis

provide automatic flags, so that it is not necessary to set up special

registers to remember such information. For example, the presence of a

previous negative particle in a sentence can be indicated by the non-

emptiness of a NEG register which contains the particle. Similarly the

presence of an auxilliary verb is indicated by the non-emptiness of an

AUX register which contains the auxilliary verb.

1.7.4 Capturing regularities

One of the linguistic goals of a grammar for a natural language is

that the grammar capture the regularities of the language. That is, if

there is a regular process that operates in a number of environments,

then the grammar should embody that process in a single mechanism or

rule, and not in a number of independent copies of the same process for



44

each of the different contexts in which it occurs. A simple example

of this principle is the representation of the prepositional phrase

as a constituent of a sertence because the construction consisting of

a preposition followed by a noun phrase occurs often in English sentences

in many different environments. Thus the model which did not treat

prepositional phrases as constituents would be failing to capture a

generality. This principle is a variation of the economy principle,

which says that the best grammar is that which can characterize the

language in the fewest number of symbols. A grammar which made essentially

independent copies of the same information would be wasting symbols in its

description of the language, and that model which merged these multiple

copies into a single one would be a better grammar because it used fewer

symbols. Thus the economy principle tends to favor grammars

which capture regularities.

The transition network model with the augmentation of arbitrary

conditions on the arcs and the use of registers to contain flags and

partial constructions provides a mechanism for recognizing and capturing

regularities. Whenever the grammar contains two or more subgraphs of

any size which are essentially copies of each other, then it is a symptom

of a regularity that is being missed. That is, there are two essentially

identical parts of the grammar which differ only in that the finite state

control part of the machine is remembering some piece of information, but

otherwise the operation of the two parts of the graph are identical. To
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capture this generality, it is sufficient to explicitly store the

distinguishing piece of information in a register (e.g., by a flag)

and use only a single copy of the subgraph.

1.7.5 Efficiency of operation

In addition to the efficiency of operation which results from the

merging of common parts of different rules, the transition network model

provides a number of other advantages for efficient operation. One of

these is the ability to postpone decisions by reworking the network. A

great inefficiency of many grammars for natural language is the procedure

whereby the grammar "guesses" some basic feature of a construction too

early in the process of recognizing it. For example, guessing whether a

sentence is active or passive before the processing of the sentence has

begun. This results in the parser having to follow several alternatives

until that point in the sentence where enough information is present to

rule out the erroneous guesses. A much more desirable approach is to

leave the decision unmade until a point in the construction is reached

where the necessary information is present to make the decision. The

transition network model allows one to take this approach.

As we will show in section 2, the transition network model allows

one to "optimize" the network by making it deterministic (except for

recursion). If several arcs with the same label,leave a given state,

then a modified network can be constructed which has at most one arc with
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a given label leaving any given state. This results in an improvement

in operation efficiency because of the reduced number of active

configurations which need to be followed during the parsing. The

deterministic network keeps identical looking analyses merged until that

point at which they are no longer identical, thus postponing the decision

as to which path it is on until the first point where the two paths differ,

at which point the input symbol usually determines the correct path. The

augmented transition network may not permit the completely automatic

optimization which the unaugmented model permits, but it is still possible

to adopt the general approach of minimizing the number of-active

configurations by reducing the non-determinism of the network, thus

postponing decisions until the point in the input string where they make

a difference. The holding of pieces of the analysis in registers until

their appropriate function is determined allows one to waituntil such

decisions have been made before building the syntactic representations

which may depend on the decision. This facility allows one to postpone

decisions even when building deep structure representations of the type

assigned by a transformational grammar.

The necessity of following several active configurations during

parsing is a result of the potential ambiguity of natural language.

The source of this ambiguity lies in the recursion operation of the

network, since without recursion the network would be a finite state

machine which can be made completely deterministic. As we will show
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in the next chapter, it is possible to eliminate much of the recursion

from a transition network (in fact we can eliminate all of the recursion

except for that induced by self embedding symbols), thus reducing still

further the number of active configurations which need to be followed.

In the augmented network model, one seems in practice to be able to

use conditions on the arcs to determine uniquely when to push down for

a recursion, leaving only the action of popping up as the source of

ambiguity and the cause for multiple active configurations. The use

of appropriate conditions (including semantic ones) on the POP arcs

of the network allows one to reduce this ambiguity still further.

One of the most interesting features of the use of registers

in the augmented transition network is the ability to make tentative

decisions about the sentence structure and then change your mind later

in the sentence without backtracking. For example, when one is at the

point in parsing a sentence where he is expecting a verb and he encounters

the verb "be", he can tentatively assign it as the main verb by putting

it in the main verb register. If he then encounters a second verb

indicating that the "be" was not the main verb but an auxilliary helping

verb, then the verb "be" can be moved from the main verb register into an

auxilliary verb register and the new main verb put in its place. This

technique, like the others, tends to reduce the number of active

configurations which need to be followed during the parsing. In the

next section we give an example which provides a number of illustrations of
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this technique of making tentative decisions and then changing them.

1.7.6 A second example

In this section we give an example that illustrates some of the

advantages of the augmented transition network which we have been

discussing--especially the facilities for making tentative decisions

that are changed as the parsing proceeds. Figure 4 gives a fragment

of a transition network which characterizes the behavior of the

auxilliary verbs "be" and "have" in indicating the passive construction

and the perfect tense. We will consider the analysis provided by this

sample network for the sentence "John was believed to have been shot,"

a sentence with a fairly complex syntactic structure. In doing so, we

will see that the augmented transition network clearly characterizes the

changing expectations as it proceeds through the analysis, and that it

does do without the necessity of backtracking or pursuing different

alternatives.

Figure 4 is divided into three parts--a pictorial representation

of the network with numbered arcs, a description of the conditions

and forms associated with the final states, and a list of the conditions

and actions associated with the arcs of the network. In the pictorial

representation, S, NP, and VP are non-terminal symbols, AUX and V are

lexical category names, and the arc's labeled "TO" and "BY" are to be

followed only if the input word is "to" or "by" respectively. The
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dotted arc with label NP is a special kind of "virtual" arc which

can be followed if a noun phrase has been placed on a special "hold

list" by a previous HOLD command. It removes the item from the hold

list when it uses it. The hold list is a feature which provides a

natural facility for dealing with constituents which are found out

of place and which must be inserted in their proper location before

the analysis can be complete. The items placed on the hold list are

marked with the level at which they were placed on the list, and the

algorithm is prevented from popping up from that level until the item

has been "used" by a virtual transition at that level or some other level.

Final states are represented in the pictorial representation by

the diagonal slash and the subscript 1, a notation which is common in

the representation of finite state automata. The conditions necessary

for popping up from a final state and the expression which determines

the value to be returned are indicated in part (b) of the figure. The

parenthesized representation of tree structure is the same as that used

in section 1.3.2. Conditions TRANS and INTRANS test whether a verb is

transitive or intransitive, respectively, and the condition S-TRANS

tests for verbs" like "believe" and "want", which can take an embedded

nominalized sentence as their "object". Features PART and UNTENSED

mark respectively the past participial form and the standard untensed

form of a verb.

1N1
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dotted arc with label NP is a special kind of "virtual" arc which

can be followed if a noun phrase has been placed on a special "hold

list" by a previous HOLD command. It removes the item from the hold

list when it uses it. The hold list is a feature which provides a

natural facility for dealing with constituents which are found out

of place and which must be inserted in their proper location before

the analysis can be complete. The items placed on the hold list are

marked with the level at which they were placed on the list, and the

algorithm is prevented from popping up from that level until the item

has been "used" by a virtual transition at that level or some other level.

Final states are represented in the pictorial representation by

the diagonal slash and the subscript 1, a notation which is common in

the representation of finite state automata. The conditions necessary

for popping up from a final state and the expression which determines

;
the value to be returned are indicated in part (b) of the figure. The

parenthesized representation of tree structure is the same as that used

in section 1.3.2. Conditions TRANS and INTRANS test whether a verb is

transitive or intransitive, respectively, and the condition S-TRANS

tests for verbs'like "believe" and "want", which can take an embedded

nominalized sentence as their "object". Features PPRT and UNTENSED

mark respectively the past participial form and the standard untensed

form of a verb.
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il

(a) Pictorial representation with numbered arcs.

Q3:

Condition: (INTRANS (GETR V))

Form:

(BUILD() (S + + (TNS +)(VP (V +))) TYPE SUBJ TNS V)

Q4 and Q6

Condition: T

Form:

(BUILDQ (S + + (TNS +)(VP (V +) +)) TYPE SUBJ TNS V OBJ)

(b) Conditions and forms for final states

Figure 4: A partial transition network

(continued on next page)
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1.

Conditions Actions

T (SETR V *)

(SETR TNS (GETF TENSE))
(SETR TYPE (QUOTE Q))

2. T (SETR SUBJ *)

(SETR TYPE (QUOTE DCL))

3. T (SETR SUBJ *)

4. T (SETR V *)

(SETR TNS (GETF TENSE))

5. (AND (GETF PPRT) (HOLD (GETR SUBJ))
(EQ (GETR V) (SETR SUBJ (BUILDQ

(QUOTE BE))) (NP (PRO SOMEONE))))
(SETR AGFLAG T)
(SETR V *)

6. (AND (GETF PPRT) (SETR TNS (APPEND (GETR TNS)
(EQ (GETR V) (QUOTE PERFECT)))

(QUOTE HAVE))) (SETR V *)

7. (TRANS (GETR V)) (SETR OBJ *)

8. (TRANS (GETR V)) (SETR OBJ *)

9. (GETR AGFLAG) (SETR AGFLAG NIL)

10. (S-TRANS (GETR V)) (SENDR SUBJ (GETR OBJ))
(SENDR TNS (GETR TNS))
(SENOR TYPE (QUOTE DCL))

11. T (SETR OBJ *)

12. (GETR AGFLAG) (SETR AGFLAG NIL)

13. T (SETR SUBJ *)

14. (GETF UNTENSED) (SETR V *)

(c) Conditions and actions on arcs.

Figure 4: A partial transition network (concluded)



We begin the analysis of the sentence, "John was believed to have

been shot," in state S, scanning the first word of the sentence, "John,"

Since "John" is a prOper noun, the pushdown for a noun phrase on arc 2

will be successful, and the actions for that arc will be executed placing

the noun phrase (NP (NPR JOHN)) in the subject register SUBJ and recording

the fact that the sentence is declarative by placing DCL in the TYPE

register. The second word of the sentence, "was", allows the transition

of arc 4 to be followed, setting the verb register V to -the standard

form of the verb "BE" and recording the tense of the sentence in the

register TNS. The register contents at this point correspond to the

tentative decision that "be" is the main verb of the sentence, and a

subsequent noun phrase or adjective (not shown in the sample network)

would continue this decision unchanged.

In state Q3, the input of the past participle "believed" tells us

that the sentence is in the passive and that the verb "be" is merely an

auxilliary verb indicating the passive. Specifically, arc 5 is followed

because the input word is a past participle form of a verb and the

current content of the verb register is the verb "be". This arc revises

the tentative decisions by holding the old tentative. subject on the

special hold list, setting up a new tentative subject (the indefinite

someone), and setting the flag AGFLAG which indicates that a subsequent

agent introduced by the preposition "by" may specify. the subject. The

main verb is now changed from "be" to "believe" and the network returns
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to state Q3 scanning the word "to". The register contents at this

point are:

SUBJ (NP (PRO SOMEONE))

TYPE DCL

V BELIEVE

TNS PAST

AGFLAG T

and the noun phrase (NP (NPR JOHN)) is being held on the hold list.

None of the arcs leaving state Q3 are satisfied by the input word

"to". However, the presence of the noun phrase "John" on the hold list

allows the virtaal transition of arc 8 to take place just as if this

noun phrase had been found at this point in the sentence. (The

transition is permitted because the verb "believe" is marked as being

transitive.) The effect is to tentatively assign the noun phrase

(NP (NPR JOHN)) as the object of the verb believe. If this were the

end of the sentence and we chose to pop up from the resulting state

Q4, then we would have the correct analysis "someone believed John."

The input of the word "to" to state Q4 tells us that the "object"

of the verb "believe" is not merely the noun phrase "John", but is a

nominalized sentence with "John" as its tentative subject. The effect

of arcs 10 and 11 is to send down the necessary information to an embedded

calculation which will complete the embedded clause and return the result

as the object of the verb "believe". Arc 10 prepares to send down the



54

noun phrase (NP (NPR JOHN)) as the embedded subject, the tense PAST,

and the type DCL. Arc 11 then pushes dorm to state VP scanning the

word "have".

At this point, we find ourselves in an embedded computation with

the register contents:

SUBJ (NP (NPR JOHN))

TYPE DCL

TNS PAST

The arc 14 permits a transition if the current input is a verb in its

standard untensed, undeclined form (i.e., one cannot say: "John was

believed to has been shot"). Since "have" is such a form, the transition

is permitted and the main verb of the embedded sentence is tentatively

set to "have" as would befit the sentence "John was believed to have

money."

The subsequent past participle "been" following the verb "have"

causes transition 6, which detects the fact that the embedded sentence

is in the perfect tense (the effect of the auxilliary "have") and

adopts the new tentative verb "be" as would befit the sentence, "John

was believed to have been a druggist." The register contents for the

embedded computation at this point are:

SUBJ (NP (NPR JOHN))

TYPE DCL

TNS PAST PERFECT

V BE
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Once again in state Q3, the input of the past participle "shot"

with a tentative verb "be" in the verb register indicates that the

sentence is in the passive, and transition 5 puts the noun phrase

(NP (NPR JOHN)) ors the hold list and sets up the indefinite subject

(NP (PRO SOMEONE)). Although we are now at the end of the sentence,

both the presence of the noun phrase on the hold list and the fact

that the verb "shoot" is transitive prevent the algorithm from popping

up. Instead, the virtual transition of arc 8 is followed, assigning

the noun phrase "John" as the object of the verb "shoot". The

register contents for the embedded computation at this.point are:

SUBJ (NP (PRO SOMEONE))

TYPE DCL

TNS PAST PERFECT

V SHOOT

AGFLAG

OBJ (NP (NPR JOHN))
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At this point, we are at the end of the sentence in the final state

Q4, with an empty hold list so that the embedded computation can return

control to the higher level computation which called it. The value

returned, as specified by the form associated with the state Q4, is

(S DCL (NP (PRO SOMEONE))(TNS PAST PERFECT)(VP (V SHOOT)(NP (NPR JOHN))))

corresponding to the tree:

S

DCL NP TNS

RO PAST PERFECT V NP

SOMEONE SHOOT NPR

JOHN

The higher level computation continues with the actions on arc 11,

setting the OBJ register to the result of the embedded computation.

Since the higher level computation is also in a final state, Q6, the

sentence is accepted and the structure assigned to it (as specified by

the form associated with state Q6) is:

(S DCL (NP (PRO-SOMEONE))(TNS PAST)(VP (V BELIEVE)(S DCL (NP (PRO

SOMEONE))(TNS PAST PERFECT)(VP (V SHOOT)(NP (NPR JOHN))))))

which in tree form is represented as:
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S

NE

DCE------;;TNS

prO

PAST

SOME BELIEVE DCL NP /WS

I

PRO PAST PERFECT V NP

I

SOMEONE SHOOT NPR

JOHN

This structure can be paraphrased "Someone believed that someone had

shot John." If the sentence had been followed by the phrase, "by Harry,"

there would have been two possible interpretations depending on whether

the additional phrase were accepted by the embedded computation or the

top level computation. Either case would have resulted in replacing one

of the indefinite subjects SOMEONE with the definite subject "Harry."

The structure produced in one case would be paraphrased "Someone believed

that Harry had. shot John," while the other would be "Harry believed that

someone had shot John."

1.7.7 Flexibility far emeripentation

Perhaps one of the most important advantages of the augmented

transition network model is the flexibility that the model provides for

experimental linguistic research. The open ended set of basic operations
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which can be used on the arcs allows for the development of a fundamental

set of "natural" operations (for natural language analysis) through

experience obtained while writing grammars. The powerful BUILDQ function

was developed in this way and has proven extremely useful in practice.

The use of the hold list and the virtual transitions ate another example

of the evolution of a special "natural" operation to meet a need.

A second area of experimentation that is facilitated by the transition

network model is the investigation of different types of structural

representations. The explicit structure building actions on the arcs of

the network allow one to experiment with representations such is dependency

grammars, tagmemic representations which explicitly label the functions of

the constituents as well as their types, and various combinatiOns of these.

It should even be possible to produce some types of semantic representation

by means of the structure building actions on the arcs.

Finally, it is possible to use the conditions on the arcs to experiment

with various types of semantic conditions for guiding the parsing and

reducing the number of "meaningless" syntactic analyseS that are produced.

Within the framework of the augmented transition network one can try to

take.advantage of much of the information which human beings seem to have

available during parsing. Many good ideas in this area have gone untried

for want of a formalism which could accomodate them.
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The experimental parsing system which has been implemented on the

time sharing system at Harvard has been constructed in a modular fashion

which lends itself to evolution and extension without major changes to

the overall system structure. Much of this flexibility is due to the

convenience of the LISP programming language in which it is implemented.

The system has already undergone several cycles of evolution and a

number of new features have been developed in this way, many of which

together with, the experiments which have been performed with the system

are described in a subsequent report.- In the next two sections, we

will give detailed proofs and constructions for the optimization of the

basic transition network model and for its recognition by a modified

form of the Early context free recognition algorithm.
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SECTION 2

REGULAR-EXPRESSION GRAMMARS AND GRAMMAR OPTIMIZATION

Although variations of context-free grammars which allow the right-hand

sides of rules to contain optional, repeatable, and alternative constituents

have been used for some time both by linguistis and by designers of artifical

programming languages
t
, many of the potential advantages of this form of

grammar have not been exploited. We will show in this section that a form-

alization of such -grammars (called fit__5.tEet.........f....;sionrreulare]ammars) is closely

related to the recursive transition network model of grammar and permits

one to "optimize" a context free grammar to allow ,for more efficient parsing.

This is done by "factoring-out" the part of the riammar which is essentially

finite state (or "regular") from that part.which inherently requires the

use of the pushdown store, thus permitting finite state optimization

techniques to apply wherever possible.

2.1 Introduction

The context-free grammars contain as a subclass the class of finite-state

grammars, which unlike the class as a whole permit transformations that take

a given grammar into an equivalent grammar that is "more efficient" in a

specialized sense. Using well-known techniques for finite state machine

optimizatiu- . it is possible to construct an unambiguous (deterministic)

parsing algorithm which will recognize an input string of length n in n

steps, and it is possible to algorithmically construct such a machine with

See for example, MITRE (1964) and Cheatham (1964).
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the minimal number of states. Finally it is possible to use techniques for

machine decomposition to obtain a componential representation of these states

which simplifies the logic of the parsing algorithm. Since. a number of

results (e.g., the equivalence between context-free grammars and pushdown

store automata) suggest that a context free grammar consists of a "finite

state part" plus some more powerful mechanism, it would be desirable if there

were a way to "factor cut" the finite state part cif a context free grammar

in such a way that the above techniques could be applied to the finite !tate

part of the grammar to yield an improved parsing algorithm. We will present

here one method for realizing such a factoring, and show that the recursive

transition network is the "natural" parsing algorithm to take advantage of

it.

2.2 Regular expression grammars.4X... . .....wm.

Define a regular emsatortjams to be a quadruple (VN, VT, S, P)

where V
N

is a vocabulary of non-terminal symbols, V
T

is a vocabulary of

terminal symbols, S is a distinguished symbol in VN called the initial

symbol, and P is a set of productions of the form:
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. where X is a symbol in VN and R is a regular expressiont over

V = VTIJ VN. The interpretation of a rule X R is that the symbol

X in a derivation may be replaced by any string of symbols in the regular

set denoted by R. That is we say'that a string $ directly produces

a string i (written 0 *) if 0 = wiX w2, * w1yw2, X 4-R is a rule

in P, and Y is a string in the regular set denoted by R (written ycR).

A regular expression grammar is clearly equivalent in weak generative

power to an ordinary context free grammar, since every regular set has a

finite state grammar and consequently the rule X -* R could be replaced

by the set of- rules" of the finite state grammar for the set R (with IX

as the initial symbol) to give an equivalent context free grammar. (The

converse is immediate since any context free grammar is a special case of a

A regular expression over a vocabulary V can be defined recursively as
follows:

(1) If x is a string in V then x is a regular expression denoting
the set {x}

(2) If x is a regular expression over V denoting the set X, then x
(or (x)* if parentheses are required for grouping) is a regular expression
denoting the set X*, the set of all concatenations of instances of
strings.in X.

(3) If x and y are regular expressions over V denoting the sets X
and Y, respectively, then xy or xy (the concatenation of x and
y) is a regular expression denoting the set XT = {uv: u c X and
v c V }. Also (x + y) is a regular expression denoting X t/Y =
{u: u c X or u c
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regular expression grammar.) The major difference between the ordinary

context free grammar model and the regular expression grammar lies in the

strong generative power and the ability to construct an equivalent "reduced"

regular expression grammar which factors out the finite state part of the

grammar from the essentially recursive pare The regular expression grammar

also allows an efficiency of expression over that of the ordinary context-

free grammar in that common parts of different rules can be combined thus

eliminating both redundant symbols in the representation and also redundant

processing during the parsing. By constructing an equivalent reduced

grammar, one can also reduce the number of non-terminal symbols in the grammar

and obtain a parsing program that minimizes the use of recursion and makes

use of the advantages of finite state parsing wherever it can.

2.3 Recognition automata for regular expression grams.

It is well known that the "natural" recognition automaton for parsing

context free grammars is the pushdown store automaton. That is, the class

of languages that can be accepted by non-deterministic pushdown store

automata is the same as the class of languages that can be generated by

context free grammars. However, although the construction which gives a

pushdown store automaton that is equivalent to a given context free grammar

is quite straightforward, the inverse problem is considerably more difficult.

The reason for this is that the usual construction that takes a context-free
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grammar into a pushdown store automatont results in a one state pushdown

store automaton - -i.e. does not take advantage of the finite state control

of the pushdown store automaton. The inverse problem is complicated because

there is no analog of the finite state control mechanism in the ordinary

context free grammar model, and hence the usual construction involves first

constructing a pushdown store automaton which does not use any of its finite

state control but carries all of its information in the pushdown store. The

regular expression grammar, however, has an analog of the finite state control

mechanism in the regular expressions in the right-band sides of the rules,

and this permits a more natural correspondence between the regular expression

grammar and the pushdown store automaton. In fact, we will argue that the

type of pushdown store automaton which is "most natural" for the recognition

or regular expression grammars is the recursive transition network

The equivalence between finite state automata (as represented for example

by finite state transition graphs) and regular expressions is also well known

(See for example, McNaughton and Yamada, 1960, Ott and Feinstein, 1961).

Book et al. (1969) present a construction which shows that it is possible to

preserve ambiguity of representation under these constructions (and that

consequently every regular expression has an equivalent unambiguous regular

expression). We can make use of these results to construct a recursive

See Ginsburg (1966) for a presentation of the contructions which take
context-free grammars into equivalent pushdown store automata and vice versa.



65

transition network equivalent to a given regular expression grammar and

vice versa as follows:

1. To construct a transition network equivalent to a given regular

expression grammar, first transform the grammar by grouping all of the

rules according to the symbol on the left-hand side and replacing each

group by a single rule whose right-hand side is the union (+) of the

right-hand sides of all of the rules in the group. We now have one

regular expression Rx for each of the non-terminal symbols of the

grammar. Now for each non-terminal symbol X, construct the finite

state transition graph equivalent to the regular expression Rx and

name the start state of this graph X. The collection of transition

graphs that result will have both terminal and:non-terminal labels,

and taken as a whole they will constitute a recursive transition network

equivalent to the original regular expression grammar.

2. To construct a regular expression grammar equivalent to a given

recursive transition network, construct a rule X Rx for each non-

terminal symbol X, where Rx is the regular expression equivalent to

the portion of the transition network accessible fro: the state X

(viewed as a finite state transition graph over the terminal and non

terminal vocabulary ignoring its interpretation as a recursive transition

network). The resulting set of rules constitutes a regular expression

grammar equivalent to the original recursive transition network.
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We see then that the correspondence between the regular expression

grammars and recursive transition networks is a direct extension of the

equivalence between regular expressions and finite state automata, and that

this correspondence is much more "natural" than the usual correspondence

between context free grammars and pushdown store automata. In fact, as we

will show, the correspondence is so close that the finite state factoring

transformations that can be performed on the regular expression grammar

are preserved when transformed into an equivalent recursive transition

network. That is the recursion (pushdown) operation of the recursive

transtition net corresponds exactly to the rewriting operation of the

regular expression grammar, and the finite state ,control of the, network

corresponds exactly to the regular expression in the right-hand sides of

the rules.

2.4 Reduced regular expression grammars

The theorem that a context free language is essentially context free

(i.e., not regular) if and only if all of its context free grammars have

self embedding symbols (c.f. Chomsky, 1963) clearly suggests that the only

part of a context free grammar that is not finite state is the self embedding

of symbols. Since the recursion operation of the recursive transition network

and the rewrite operation of the regular expression grammar are the non-finite

state parts of these two models of grammar, one may ask whether it is possible

to "optimize" the.grammar so that these operations apply only to the self

embedding of symbols. We will show that such is indeed the case and that it
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can be done algorithmically. That is, we will describe a "reduction

algorithm" which will reduce any regular expression grammar to an equivalent

one in which the only non-terminal symbols other than the initial symbol

are self embedding symbols. The implication of this result for the design

of parsing algorithms is that it is possible to optimize any context free

grammar so that the rewrite operation is confined exclusively to self 'emb'edding

symbols, and all other parts of the grammar may be optimized by finite State

techniques. If we take the regular expressions in a reduced regular expression

grammar and write minimal finite state machines for recognizing the strings

which they denote (representing these machines in the form of state transition

diagrams), then the resulting graph is a recursive transtion network which

recognizes the strings of-the original regular expression grammar.

2.5 The reduction algorithm

We will give here a series of constructions which establishes the

following theorem:

For every regular expression grammar Gles(V S, P), there is an

equivalent regular expression grammar G' (171:1, VT, S, P'), where

V' is a subset of V
N consisting only of self-embedding symbols plus

the initial symbol S. We call such a grammar reduced.

Proof:

First, it is clearly possible to obtain a regular expression grammar

equivalent to G which has only one rule for each non-terminal symbol in

Ve-e.g. by replacing all of the rules:

R Z R
2'

. 9 Z R
n
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for a particular non-terminal Z by the single rule Z + R1, where

R
Z
= (R

1
+ R

2
+ + R

n
). Assume that G is in such a form. We can

now begin to construct a reduced grammar equivalent to G as follows:

1. Pick a non-terminal symbol Z other than S which does not occur

in the right-hand side of the rule Z R. If there are no such symbols,

then halt.

2. Replace every occurrence of Z in all of the other rules of the

grammar with the regular expression R2 (this replacement preserves

regular expressions).

3. Delete the rule Z and delete the symbol Z from the non-

terminal vocabulary.

4. Repeat steps 1 through 3 until there are no more non-terminal

symbols (except possibly S) which do not occur in the right-hand sides

of their rules. (The algorithm will converge because each interaction

eliminates one symbol from VII and there are only finitely many to

start with:

We now have a grammar in which the only non-terminal symbols other than S

are recursive symbols, and we now proceed to give constructions for eliminating

those which are not self-embedding--i.e., the left- and right-recursive

symbols.
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2.5.1 Elimination of left and ri ht recursion

Let L(Z) = CK=c-VN: Xw e for r some- w.eV, 1. fhen L(Z) is the

set of non-terminal symbols which-can, be accepted.as the first. symbol of a

string in Rz. Let L (Z) be the "closure" of ,-L(Z) in the sense:that

L (Z) is the smallest subset of V
N

such that L(Z) c.L (Z) and

X c L (Z) L(X) 11 L (Z) (i.e., L (Z) is the closure of (Z) under

the operation Ai).

Similarly, let R(Z) = {X c wX c Rz:forsone w eV), let

S(Z) = {X e VN: w1Xw2 c for r some wl, w2 c VV } , and let R (Z)

and S (Z) be the closures of R(Z) and S(Z), respectively. Then

'*
Z is left recursive if Z E L (Z) ,

*
Z is right recursive if Z c R (Z),

and Z is self-embedding if Z E S*(Z).

A symbol .X can be left (right) recursive for one of two reasons- -

either it is in L(X) (R(X)).(i.e., it ista'PerMissibliinitial (final)

symbol in the right -hand side of the rule X c or it-is in L(Y) (R(Y))

for some Y in L (X) (R (X)). We will show in the next two sections that

it is possible to eliminate the first type of left and right recursion (which

we will call direct left and right recursion) by constructing an equivalent

rule that has no direct left (or right) recursion but which accepts the same

set of terminal strings when used in conjunction with the rest of the grammar.

In this section we will assume these results and show how to eliminate the

second type of left and right recursion. We will describe the algorithm for
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left recursion only, since the algorithm for right recursion will be

exactly analogous.

The existence of left recursion of the second type is ,due to the

existence of left recursion chains Y1, Y2, ... ,Yn, where yi c L(21).4

Y
2

c L(Y1), , Y
n

c L(Y
n-1

)
'

and X el(Y
n
). We will call such a chain

simple if none of the intermediate Yi's are X's and none of them are

repeated. The algorithm for eliminating left recursion from the grammar

will consist of the successive shortening of all of the simple left

recursion chains by substituting the expression Ry for Yl in the

' 1

right-hand aide of the rule X Rx until there are no more left recursive

chains (and hence no more left recursion,of the second type).

The argument is more difficult than it might seem to be at first because

of the flexibility of the.regular expression grammar. It is possible that a

single rule may have.several non-terminal symbols as initial symbols, and in

particular it is possible to have two initial symbols7-one identical to the

left-hand side of the rule and the other involved in a left recursion chain

that goes through the first. (For example a rule Y Yc + Xd 71- f when

there exists another rule X + Ya + b.) Consequently, a.simple repeated

expansion of the initial symbols of a rule wtich are involved in a, left.

recursion chain may not terminate. (In the above example the repeated

expansion of Y in the second rule would never end.) It is necessary. there-

fore to first eliMinate direct left recursion.from all of the,, rules before

expanding. Each expansion, however, may reintroduce direct left recursion
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(indeed this is the reason for doing it) and therefore it is necessary to

repeat the algorithm for eliminating direct left recursion before each

expansion.

It remains only to show that Cie repeated alternation of expansion and

elimination of direct recursion will converge in a finite number of cycles.

We can assure ourselves that it does by noting that each cycle of expansion

reduces the length of each simple left recursion chain by 1. This follows

directly from our method of expansion--we replace each symbol Y in L(X)

with the set of sumbols L(Y) (after first making sure that Y is not a

member of L(Y) by eliminating direct left recursion) thus permitting only

those left recursion chains in the new grammar which can be obtained from

left recursion chains in the old one by the deletion of the first element

of the chain. Since the longest simple recursion chain orginally can be no

longer than the number of non-terminal symbols of the grammar and since each

cycle of expansion and elimination of left recursive symbols reduces this

length by 1, the algorithm will converge in a finite number of steps to a

grammar in which there is no left recursion of the second type. A final

application of the direct left recursion elimination algorithm removes all

left recursion from the grammar.

2.5.2 Elimination of direct left recursion

To eliminate direct left recursion from the grammar, we construct for

each left-recursive symbol X a new rule X +ix which does not permit X

as an initial symbol, but which produces the same set of terminal strings as
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the original rule when used in conjunction with the rest of the grammar.

We do this by first constructing a finite state transition graph D
X

equivalent to and d then transforming it as follows:

1. Let X be the start state of the graph, and let an arc from state

x to state z with label y be represented by the triple [x, y, z].

If there is more than one arc with label X leaving the start state X,

construct an equivalent graph D' in which there is only one such arc

as follows: -Let Q be the set of all states that are accessible from

the start state via a single arc labeled X. Add a new state q', and

for every arc [x, y, z] leaving a state x in Q, add a new arc

[q', y, z] leaving state q'. Now delete all of the arcs [X, X, z]

for z in Q and add the single arc [X, X, Finally, delete

any states in Q which now have no arcs entering'them. The resulting

graph DX has a single arc leaving state X with label X, namely the

arc [X, X, q'] and it is equivalent to the original graph DX.

2. Eliminate the direct left recursion of the symbol X by deleting

the arc [X, X, and for every arc [x, y, z] which enters a final

state z, adding a new arc [x,
tit] (this is equivalent to adding an

e-transition from z to q'). The resulting graph DX will accept

the same set of terminal strings as the original when used in conjunction

with the rest of the grammar, but without direct left recursion of the

symbol X.
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3. Construct the regular expression ix from the transiton graph

We can show that the grammar which results from the above algorithm

will accept the same set of terminal strings as the original grammar by a

straightforward recursion on the depth of'the parse trees. By construction

of the new rule X +Tr all of the rewritings of the original grammar are

permitted by the new grammar except those which rewrite the symbol X as a

string beginning with the symbol X. Therefore, any parse tree making use

only of these rewritings will still be accepted by the new grammar. Let

w ha any string recognizable as a construction of any type in the

original grammar, and let T be any.parse tree for the string if -analyzed

as a Y. If the depth of this tree is 1, then it must result from a single

rewriting the right-hand side of uhich is the terminal string w (which

cannot start with the non-terminal X), and hence the same rewriting is

possible in the new grammar. Now suppose it is true for all parse trees of

the original grammar of depth less than n that the terminal string of that

tree is also acceptable to the new grammar as a construction of the same type.

Suppose T has depth n. Then let Z Y1/12 Yn be the topmost rewriting

of the parse tree and let wl, w2, , wn be the segments of the terminal

string dominated by Y1, Y2, , Yn, respectively. By the inductive

hypothesis, each of the strings wi is recognizable as type Yi by the new

grammar and unicas Yi - X the topmost rewriting is also permitted by the new

grammar. Hence the only case of interest is when Yl = X. In this case we

know that the string wl is accepted as an X both by the old and new grammars
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and hence by the machine DX. However, by the construction of step 2,

every arc that enters a final state of ix also has a copy which enters

state q'. Hence .w1 will take machine from state X to state q'.

Now also, by construction, if the -machine t-Dx accepts. the string-

Y1Y2 Yn' where Y
1

I. X then- the -machine -II
X

when started in. state

q' will accept the string Y2 ... Yn- . ..Thus the total--sequence we2 wn

will take DX from state X to a final state and hence w is recognizable

as an X by the. new grammar. This completes the induction proof.

Example 1 shows the application of -this..algorithm-for the rule

X -0- Xa + Xb + cd.



RX :

D
X

:

X
:

nx:

75 ,

Xa + Xb + cd

- - - - -.... 5,..

* *
Rx: c(d + d (a + b) (a + b)) = cd (a + b)

Example 1: Elimination of Direct Left Recursion
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2.5.3 Elimination of direct right recursion

To eliminate right-recursion from the grammar, we again construct for

every right-reeUrsive symbol X a new rule X iic which does not permit

X as a final symbol, but which will produce the same set of terminal strings

when used with the rest of the grammar. Again, we do this by first constructing

a finite state transition graph Di equivalent to Rx and transforming it

as follows:

1. If there is more than one final state and it is not a dead end

state, then .construct an equivalent graph Di in which there is only

one final state (and it is a dead end state) as follows: Add a new

state q' and for every arc [244 y, z] entering a final state z,

add a new arc [m, y, q1] entering state q'. Now delete any of the

old final states which are dead end, and let q'. be the sole final

state in the new graph. The resulting graph 14 has only one final

state (namely q') and it is a dead end state.

2. Eliminate the right recursion of the symbol X as follows: Let

Q be the set of all states from which there is an arc labeled X which

goes to the final state, and for every arc [x, y, z] entering a state

z in Q, add a new arc [x, y, X] returing to the start state. Now

delete all of the arcs [x, X, q'] for states x in Q and delete any

states in Q which now have no arcs leaving them. The resulting graph

DX will accept the same terminal strings as Di when used in conjunction

with the rest of the grammar, but permits no final symbols X.

3. Construct the expression RX from the graph D.
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To show that the new grammar accepts the same set of strings as the

original grammar we again proceed by induction on the depth of the parse tree.

Let w be a string recognizable by the original grammar as a construction of

type Y and let T be any parse tree for the string w analyzed as a Y.

As before, if the depth of the parse tree is 1, then the rewriting cannot

involve recursion of any type and hence the string is accepted by the new

grammar. Assume the result is true for all parse trees of depth less than

it and consider T of depth n. Let Z ' /1172 Y
n

be the topmost

rewriting of the tree and let wl, w2, , wn be the corresponding

segmentation of the terminal string. The only case of interest is when

Yn equals X, in which case the sequence Y1, Y2, ... , Yn_i will take

machine DX (and also D
X) into a state in Q. Therefore by the construction

of D
X

the same sequence will also take DX back to the start state X,

and since w
n is recognizable as an X by the new grammar (by the inductive

hypothesis), the entire string w will also be recognizable as an X. This

completes the proof. Example 2 shows the application of the algorithm for

the rule X -* (abX (bX)* + c).



Rx:

D
X

:

D':
X

13X:

*
(ab X (bX) + c)
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X

X

(a (b + bX(bX) * b)) * c = (a (bX) * b) * c

Example 2: Elimination of Right Recursion

F : { cif
}



SECTION 3

RECURSIVE TRANSITION NETWORKS AND THE EARLY RECOGNITION ALGORITHM

3.1 Introduction

Currently available recognition algorithms for context free grammars

fall into two categories according to the bound that can be placed on the

amount of time required to parse a string of length n. The straight-

forward parsing algorithms such as the Harvard Predicitive Analyzer

(Kuno and Oettinger, 1963) which simulates the alternative computations

of a non-deterministic pushdown store automaton or the immediate

constituent analyzer (Herringer et al., 1966) which enumerates all of

the reductions that can be performed on a given string by a given context

free grammar require an amount of time which is an exponential function

of n for some grammars. This is inevitably true for any "straight-

forward" parsing algorithm because of the existence of context free

grammars which are exponentially ambiguous. Recently however, several

recognition algorithms have been discovered which have a general time

bound proportional to the cube of the length of the input string (e.g.,

Kasami, 1965, Younger, 1966, and Early, 1968). In addition, certain

subclasses of the context free grammars have been shown to be recognizable

with smaller time bounds--e.g., linear grammars in time n
2

by Younger (1966)

and by Kasami (1967) and LR(k) grammars in time n by Knuth (1965). These

results are based on different algorithms for each of the special cases.

The Early algorithm, however, matches or surpasses all of these results

with a single algorithm which does not need to be "told" the class of

grammar on which it is operating. The Early algorithm works within the

79
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general n
3

bound for any context free grammar. However, when the given

grammar is unambiguous or linear (and in may other cases) the bound is

only n
2

, and for an LR(k) grammar using look ahead of k symbolsas

well as for many other grammars)the Early algorithm has a bound proportional

to n. In addition, the Early algorithm operates on the grammar as it is

given, whereas the Younger result depends on the construction of an

equivalent normal form grammar and the Kasami result requires a standard

2-form grammar.

3.2 Time bounds

Time bounds of the sort described above have a number of limitations

in their ability to characterize the "goodness" of an algorithm for

practical applications and may tend to be misleading if not carefully

analyzed. First, they tend to be pessimistic in that they characterize

the behavior of the algorithms for the worst case grammars and the worst

case strings. Typically the grammars which one needs to parse in practice

will not be the worst case but some intermediate case, and the real

figure of concern is the number of operations required to parse a "typical"

string for a "typical" grammar. An algorithm such as the Younger algorithm

which always realizes its worst case bound for every grammar and every

strincz is clearly not as practical as one which has the same bound in the

worst case but generally does much better. The other factor that needs

to be taken into account in the evaluation of a time bound of this sort
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is the size of the constant of proportionality. It is true that tie

differences that arise between two algorithms due only to the size of

the proportionality constant will eventually be swamped by the growth

of the factor of n, but this assumes that one will actually parse

strings of indefinitely increasing length. Many of the algorithms that

achieve the n
3

bound do so at the cost of an immense constant factor,

and the length of the input may not be long enough in the typical case

to make such an algorithm preferable to one say with an n
4

bound and

a much smaller constant. (In comparing the constants of proportionality

for two rival algorithms, it is of course necessary to be careful that

the definitions of the basic operation (or "step") used for computing the

bounds in the two cases are comparable in the amount of time that they

would require on some machine.)

The Early algorithm and the bounds for it suffer very little from

the first limitation since the algorithm seems to do the best that can

be done with any particular grammar and string that it is given. Even

when the grammar as a whole is not unambiguous so that the n
2

result

holds, the algorithm may still require no more than n
2

time to recognize

those strings of the grammar which are not ambiguous. Similarly the

algorithm may operate in time n on a large class of strings for a grammar

which is not recognizable in time n in general. With respect to the

second limitation, the Early algorithm is no worse than the other n
3

algorithms which have been devised (and considerably better than some),
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but it still suffers from an excessively large constant in some cases--

especially when it is using lookahead. We will now show that the

transition network model of grammar can be used by a slightly modified

version of the Early algorithm to recognize strings within the same time

bounds, and that the finite state optimization of the network can provide

a reduction in the constant of proportionality. The recursion elimination

operation may also move a grammar from the n
3

domain to n
2

or even n,

as when the elimination results in a linear gremmr.L .r even a finite state

grammar. Before we proceed however, we will present a formal definition

of a "transition network machine" which will provide the terminology

for the description of the recognition algorithm.

3.3 Formal definitions

A transition network machine is a quintuple (VN, VT, S, M, I), where

VN is a vocabulary of terminal symbols, VT is a vocabulary of non-terminal

symbols, S e VN is a distinguished initial symbol. M is a set cf esjointt

finite-state automata with input vocabulary V = VNU VT, and I is an

indexing function which assigns to each non-terminal in VN a unique

machine in M.

By disjoint we mean that no two machines in M have any state names
in common. Thus, given the state name alone it is possible to determine
which machine we are referring to.
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For the sake of simplicity we will assume that the start state

of the machine 1(X) is named X. Let Q be the total set of states

of all the machines in M, F the total set of final states, and 6

the transition function which is the union of the individual transition

functions of the machines in M (viewing these functions as sets of

ordered pairs). The fact that the machines in M are disjoint means

that their structure is preserved in this single resulting network

N = (VN, VT, Q, 6, S, F). It also means that each state in the set

Q uniquely detecmines the particular automaton to which it belongs

and hence the uon terminal symbol which it is trying to recognize.

Let h(q) be the function which gives for any state q the non-terminal

symbol which that state is trying to build. We will make use of this

function as well as the transition function 6 in the description of

the recognition algorithm. We will also make use of the function L (q)

defined in section 2.5.1 which gives the set of all non-terminals which

can be pushed down for from state q (perhaps via a succession of pushes

through intermediate states). All of these functions can be represented

in the computer by storing them in the form of sables.

We describe a computation of a transition network machine as follows.

A machine configuration consists of a triple (q, w, s) where q is a

state in Q, w is the string (in VT) which remains to be scanned,

and s is a string of states in Q which keep track of the recursion.
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, w, w' C V
T

, and s, s' C Q we write

(q, w, s) (q', w', s')

if either

1. w = aw', s = s', and q' e 5(q, a)

2. s' = qs, q' E VN, and q e 6(q, q')

3. s= q's', w= w', and q C F

The first case is a normal transition, the s.zond is a pushdown operation

(or recursion), and the third is the pop operation which returns from a

lower level of recursion. We define the transitive closure
*

of the

relation F by the recursive definition:

c
1

c
2

iff

either c
1
= c

2
or

t3 c
3

a c
1

c
3

and c
3

t--- c
2.

*
A terminal string w is accepted by the network if (S, w, ') (q, e, e)

for some q e F (where e denotes the empty string consisting of no symbols).

3.4 The Ear/y algorithm

The Early recognition algorithm parses an input string x1x2x3 xn

by constructing for each position i in the string a "state set" Si which

contains all of the states in which a non-deterministic pushdown store

automaton cculd be at that point in the string. Instead of carrying a

pushdown store along with each state, the algorithm carries a pointer to
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the position in the string where the last pushdown preceeding each state

occurred. The n3 bound on the algorithm depends on the ability to

follow any such pointer back to the appropriate position in the string

in a fixed amount of time (independent of n)--i.e., it requires the use

of a random access store of unlimited size for storing the state sets.

This of course is only approximated by the core storage of a real

computer, but for reasonable length strings it is a useful approximation.

As long as the computation can be performed within the random access

memory of the computer the approximation holds.

In this section we will describe a slightly modified form of the

Early recognition algorithm which will recognize the strings accepted

by a recursive transition network in time proportional to the cube of

the length of the string. Early's result that the time is bounded by

n
2

in the case of unambiguous strings and that the time is proportional

to n for strings for which the size of the active state sets at any

point is bounded will also hold.

The algorithm:

Given the input string xix2x3 xn to be parsed, the algorithm

proceeds as follows:

1. Construct state set S
0

{[S, , and set the closure

S' = S
0
l) ([q, 0] : q c L*(S)} . This represents the set of

all things which we can be looking for at the beginning of a

sentence.
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2. For i = 1, 2, , n construct sets Si and Si as follows:

2.1 (transitions)

For each [q, j] in for which 6(q, xi) # 0,

add [q', j] to Si for each q' in 6(q, xi). (That

is, Si = j] : q' c xi) & [q, j] c

2.2 (closure operations)

Set Si initially equal to S
i

and scan the states in

Si in order performing the following operations on each

state [q, j]:

2.2a (pushing down)

For each q' in L*(q) add [q', 1] to the end of

Si (so that it will be scanned) unless it is already

a member.

2.2b (popping up)

If q is a final state, then scan the states

[q', j'] in S' for which 6(q% h(q)) # 0 (i.e.,

states which can push down for the symbol h(q)). For

each such q' and for each q" in 6(q',h(q)), add

j'] to the end of Si (so that it will be

scanned) unless it is already a member.

When the last state of S' has been scanned and no new

states have been added, then Si is complete.
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3. The string is accepted if the state set contains a state

[q, 0] for some final state q. It is rejected before it

reaches the end if any Si is empty.

To illustrate the operation of this algorithm, we will work through

the example "Did the red barn collapse?" using the transition network

of Figure 1 of Section 1. We assume that the words, "did", "the", "red",

"barn", and "collapse" are marked in a dictionary as members of the

lexical classes aux, det, adj, n, and v, respectively. We proceed as

follows:

0: S
0
= {[S, 0]} by step 1

S; = {[S, 0], [NP, 0]}

1: 6(NP, did) = 0 and

6(S, did) = {q2} since "did" is an aux.

Hence S
1
= {[q2, 0]) by step 2.1.

*
ot (q2) = {NP} (i.e., q2 can push for a noun phrase), and

therefore Si = {[q2, 0], [NP, 1]) by step 2.2a

2: 6(q2, the) = 0 and

6(NP, the) = {qA} since "the" is a det.

Hence 5
2
= {[q

6'
1]) by step 2.1.

*
X (q6) = 0 ; hence q = S2.

3: 5(q6, red) = {q6} since "red" is an adj.

Hence S3 = {[q6, 1]} by step 2.1, and again Si = Sa.



4: 6(q6, barn) = {q7} since "barn" is a noun.

Hence S
4
= {[q7, 1]}

cZ*(q7) = {PP} and hence [PP, 4] is added to S4.

Also, q7 is a final state, which means that we have found

a complete construction. Its type is h(q7) = NP. We now refer

to the state set Si which caused the pushdown to look for this

NP (as indicated by the pointer 1 which we have carried along

with the state [q7, 1] ). Of the two states (q2 and NP) in

the state set Si, the state q2 can take an NP transition

to state q3 (i.e., 6(q2, NP) = {q3}), and hence we add the

pair [q3, 0] to S4 by step 2.2b. The set S4 now is

equal to {[q7, 1], [PP, 4], [q3,

5: 6(q7, collapse) = 0

6(PP, collapse) = 0

6(q3, collapse) = {q4} since "collapse" is a verb.

Hence S5 = {[q4,

,e(q4) = {NP }, and therefore [NP, 5] is added to S.

Since q4 is a final state and h(q4) = S, we check the state

set S'
0

to see if anything there can take an S transition

(this would handle left recursion if there were any). Since

there are no such arcs from either of the states S and NP,

the final value of S; is {[q4, 0], [NP, 5]}. Since this is

the end of the string and the state set contain. [q4, 0] and

q4 is a final state, the sentence is accepted by the algorithm.
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3.5 A comparative example

Early's algorithm as originally described (Early, 1968) is essentially

a special case of the algorithm we have described here in which the states

of the transition net are pairs of integers pk where p is the number

of a rule in the context free grammar and k is a count of the number of

symbols in the right-hand side of the rule which have been recognized. t

Instead of a single start state named X to begin a pushdown for the

symbol X, the original Early algorithm has a start state pO for

each rule D
P

4' C
pl

... C
pn whose left-hand side is equal to X. The

P
final states are the pairs pn

P
(where n

P
indicates that all of the

right-hand side of the rule has been recognized). We will give here a

brief illustrative example that will indicate the advantages which can

be gained by using the transition network version over the unmodified

Early recognition algorithm.

Figure la shows a context free grammar for a class of propositional

calculus expressions involving the connectives "and, "or" and "if...then",

where P is the only primitive proposition. Figure lb shows an equivalent

recursive transition network, and figure lc shows the transition network

that is derived from it when left and right recursion are eliminated and

the network is minimized. Figure 2a shows the computation of the modified

When lookahead is involved, the state includes a k-tuple of symbols
which are expected values of xi+ixi+2
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Early algorithm applied to the string "if P and P then P or P"

using the optimized transition network of figure lc, while figure 2b

shows the computation of the original Early algorithm using the grammar

of figure la. The improvement in the number of states that have to be

processed is apparent.
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1. S 4 if S then S

2. S S and S

3. S S or S

4 . S 4 P

(a) sample context free grammar

(b) an equivalent transition network

(DC

then i
P

and

O

F {3}

(c) an optimized transition network

Figure 1: An optimized transition network

for a context free grammar
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if

0 1

and then orP

2 3 4 5 6 7 8

S,0

S,1

3,1! S,1

2,0 2,0

3110!""1S10""'-'3,01

Total 12 states.

(a) recognition using the transition network

of figure lc.

if P and P then P or

0 1 2 3 4 5 6 7 8

1.0,0---1.1,0 4.1,11 2.2,1 4.1,3! 1.3,0 4.1,5! 3.2,5 4.1,7!

2.0,0 1.0,1 1.2,0 1,0,3 2.3,11 1.0,5 1.4,0! 3.2,0 3.3,5!

3.0,0 2.0,1 2.1,1 2.0,3 2.1,3 2.0,5 2.1,5 1.0,7 3.3,0!

4.0,0 3.0,1 3.1,1 3.0,3 3.1,3 3.0,5 3.1,5 2.0,7 2.1,7

4.0,1 4.0,3 4.0,5 4.0,71.2,0 2.1,0 1.4,0!

2.1,1 3.1,0 2.1,5

3.1,1 3.1,5

2.1,0

3.1,0

Total 50 states.

(b) recognition using the original grammar

Figure 2: Comparison of the Early algorithm using on optimized

transition network versus the original context-free grammar.



3.6 Time bounds for the Early algorithm

The proof that the modified version of the Early algorithm that we have

presented requires no more than n
3

time to parse a string of length n

parallels almost exactly the original proof given by Early. The proof

relies on the assumption of a random access memory for the storage of the

intermediate results that arise during the computation, and the achievement

of the n
3

bound (or the n
2

bound for unambiguous grammars) requires

careful use of this memory. For example, the qualifications "unless it is

already a member" of steps 2.2a and 2.2b require special treatment in order

to achieve the n
3

bound. If this were done by sequentially scanning the

list Si, then an extra power of n would be required in time bound

because the size cif the set Si can grow proportional to the length of

the string. On the other hand, if a random access array indexed by q'

and j' is used to store the state set Si, then the presence or absence

of [q', j'] from the state set can be determined by directly interrogating

a single bit. (It is sufficient to index the set Si by just the back

pointers j' and to scan the Ith-- subset for the value of q' since

there is a fixed bound on the number of states which can be .Ln such a

subset.)

In the computation of the time bound, we will count the number of

"operations ", where an operation may be taken to be any computation which

can be done within a fixed time bound that is independent of the length

of the input string. In particular, for the appropriate organization of
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the random access memory, determining whether a state set S'i contains a

pair [q', j'] will be an operation. Likewise determining whether S!
J

contains states which can push for a given non-terminal symbol X and

obtaining a pointer to a list of such states will be an operation.

If N is the total number of states in the network, then there are

at most N(i + 1) states in the state set Si. Let R be the maximum

number of arcs which leave any state, and let M be the maximum size of
*

the set L (q) for any state q. A bound on the number of operations

required to parse a string of length n can be computed as follows:

1. It requires at most M + 1 op:rations to construct the

*
initial set S' since there are at most M states in L (S).

2. At a given position i in the string the following bound can be

placed on the number of operations:

2.1 Transitions require at most R operations for each of the states

in S
i-1'

or no more than NRi operations in all.

2.2 For each state in the set Si the number of operations

required for the closure operations can be bounded as

follows:

2.2a It requires at most M operations to add all of the

states to which the current state can push down since

*
there are at most M states in L (q).

2.2b When q is a final state, with a pointer to some

position j in the preceeding string, it requires at
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most NR(j + 1) operations to scan the state set

S! and resume any of the computations which pushed

down for the current construction.

2.3 Since the operations of steps 2.2a and 2.2b are performed

on each of the states in Si, the total number of

operations for step 2.2 is bounded by

N(i + 1) [11 + NR(J + 1)] 4 NM(i + 1) + N
2
R(i + 1)2 .

3. Since the operations of step 2 are performed at each position of

the input string for iml, , n, the total number of operations

for this step can be bounded by

i=1
[NM(i + 1) + N

2
R(i + 1)

2
] N

2
Rn

3
+ 0(n

2
) .

Hence the total number cf steps required by the algorithm is bounded by

N2Rn3 + 0(n
2
).

The achievement of the n
2

bound for unambiguous grammars requires a

little more care in the implementation of the algorithm. It is necessary

to get the number of steps required in step 2.2b down to a fixed amount for

each state [q, j] in Si . To do this we cannot afford to scan the entire

state set S' to look for states which can push down for the symbol h(q).

It is necessary instead to be able to enumerate the class of such states

using no more than a fixed amount of time fog each one. This can be

accomplished by keeping an array S!: of all the entries in Sj indexed

by the non-terminal symbols pushed for. With such an array it is possible

to instantly determine for any specified value of h(q) and position j
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a pointer to the list of those states [e, j'] in S' for which

S(q', 11(0) 14 0. This list an be constructed and maintained by implementing

the algorithm so that when we add [q', i] to Si in step 2.2a, we also

add [q, j] to the list S';.(q'). Then when we refer to a previous position

in the input string in step 2.2b to see whether any states in S' could

have pushed for the symbol h(q),, we need only consult the appropriate

entry S':(h(q)). (Since the only steps of the algorithm which refer to

an earlier point in the string are those in step 2.2b, the only information

that needs to be kept about the state sets prior to positions i-1 and

iarethesetsW!.ThesetsS!(andSjare only used when i is

equal to j and j+1, and they may be discarded thereafter. Hence it is

not necessary to keep multiple copies of the entire computation, but only

of the active part of the computation
Si-1

and Si.)

Using this further clarification of the algorithm, the proof that the

bound is n
2

for unambiguous grammars goes as follows: Since there can be

at most N(i 1) states in state set Si there will be at most a number

of operations involved in step 2.2 proportional to N(i + 1) unless some

state is added in more than one way. This is true because we have organized

the stored information in Si so that it takes only one operation for

states [q, j] for which Sj(h(q)) is 0, and only one operation for

each state to be added otherwise. Hence the total number of operations

in step 2.2 has a bound proportional to i unless some state is added in

more than one way. On the other hand, if some state is added in more

than one way, then the grammar will accept ambiguous strings (not



necessarily the one that is currently being parsed however) unless the

predicted state is a dead end that cannot be completed for any string

(in which case it should have been removed from the network). Hence if

the grammar was unambiguous (and contained no misleading, ambiguous-

looking but dead end predictions) then the number of operations required

by step 2.2 is at most proportional to i, and the total number of

operations to recognize a string is proportional to n
2

The time n bound on the number of operations for recognizing a

"bounded direct ambiguity grammar" (Early, 1968), which includes the

class of LR(k) grammars, is achieved, because the total number of states

in any state set has a fixed bound for such grammars.

Although we have described here the time bounds for a recognizer only,

it is possible as Early shows to use the algorithm as a parser (a routine which

not only determines whether a string is a sentence but also builds a

representation of all of the structural descriptions of the sentence)

within the same time bounds. This requires the use of a representation of

structural descriptions which merges the common parts of different

descriptions of the string (since some sentences can be exponentially

ambiguous even though they require only n
3

steps to recognize them and

build the structural descriptions). It is also not difficult to add

conditions to the arcs of the transition network (which must be met in

order for the arcs to be followed) and still recognize the strings within

the same time bounds provided that the conditions have a fixed time bound.

For example, the lookahead feature for recognizing LR(k) grammars in time

could be added as a condition on the arc.
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4. Conclusion

We have presented a model of grammar based on the notion of a

transition network similar to a finite state transition network applied

recursively,and have shown it to be a very promising model for natural

language analysis. It is capable of building deep structure representations

while doing a surface structure analysis of a sentence without a separate

explicit reverse transformational component. Also it is capable of

considering semantic selectional restrictions while parsing, and it may

provide the basis for a harmonious interaction between syntactic and

semantic analyses. In addition to having a number of theoretical

advantages for efficient parsing, the model is convenient for a human

grammar designer to work with and answers a number of objections which

linguists have raised against the transformational grammar model.

A transition network parser along the line presented in this

report has been implemented in BBN LISP on the SDS 940 time sharing system

at Harvard, and a number of experiments have been carriad out exploring

various parsing strategies and special parsing techniques. Particular

attention has been devoted to exploring the interaction between the parser

and the semantic interpreter and using semantic information to guide the

parsing. The details of the parser implementation and the experiments

which have been conducted will be described in a forthcoming report.

Experimental evidence, as well as the theoretical arguments presented in

this report, indicate that this model will permit the mechanical analysis
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of natural language to a much greater depth than has been possible with

other grammar models and that it will not be necessary to pay an

exorbitant penalty in processing inefficiency in order to do this.
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